Damien Inès, Carole Pichereaux, David Wendehenne, Pierre Emmanuel Courty, Claire Rosnoblet
{"title":"Rhizophagus irregularis DAOM197198在丛枝菌根共生关系的建立和功能中调控短根紫花苜蓿根泛素。","authors":"Damien Inès, Carole Pichereaux, David Wendehenne, Pierre Emmanuel Courty, Claire Rosnoblet","doi":"10.1007/s00572-025-01226-3","DOIUrl":null,"url":null,"abstract":"<p><p>The regulation of cellular protein homeostasis involves the ubiquitin-proteasome system (UPS) by selectively targeting misfolded or end-of-life proteins. The involvement of the UPS in biotic stresses has been studied mainly in plant-pathogen interactions and poorly in plant-mutualistic interactions. Here, we studied through proteomic approaches (western blot, pull-down of polyubiquinated proteins and nano-LC-MS-MS analysis), the involvement of the UPS during the establishment of the mutualistic interaction between the arbuscular mycorrhizal fungus Rhizophagus irregularis DAOM197198 and the roots of Medicago truncatula, as well as in the established symbiosis. Roots of M. truncatula seedlings were harvested 0 h, 3 h, 6 h, 9 h, 12 h, 24 h and 15 days post-inoculation. We characterized a short-time and a-long-time response of the root ubiquitinome. Some proteins as such as flotilins or involved in the translational machinery were less-ubiquitinated, suggesting the facilitation of the de novo synthesis of proteins required to the establishment of arbuscular mycorrhizal symbiosis. In contrast, other proteins as transporters involved in plant nutrition through the direct pathway (i.e., MtPT5) and some enzymes involved in the lipid biosynthesis pathways were more-ubiquitinated, highlighting their putative degradation. In addition, Cdc48 protein accumulates in roots from 9 to 24 h post-inoculation, suggesting a role of Cdc48 in the transitory immune response during plant-fungal interactions. The activity of the UPS is consequently central in the establishment and functioning of arbuscular mycorrhizal symbiosis by modulating protein ubiquitination.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 5","pages":"54"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rhizophagus irregularis DAOM197198 modulates the root ubiquitinome of Medicago truncatula in the establishment and functioning of arbuscular mycorrhizal symbiosis.\",\"authors\":\"Damien Inès, Carole Pichereaux, David Wendehenne, Pierre Emmanuel Courty, Claire Rosnoblet\",\"doi\":\"10.1007/s00572-025-01226-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The regulation of cellular protein homeostasis involves the ubiquitin-proteasome system (UPS) by selectively targeting misfolded or end-of-life proteins. The involvement of the UPS in biotic stresses has been studied mainly in plant-pathogen interactions and poorly in plant-mutualistic interactions. Here, we studied through proteomic approaches (western blot, pull-down of polyubiquinated proteins and nano-LC-MS-MS analysis), the involvement of the UPS during the establishment of the mutualistic interaction between the arbuscular mycorrhizal fungus Rhizophagus irregularis DAOM197198 and the roots of Medicago truncatula, as well as in the established symbiosis. Roots of M. truncatula seedlings were harvested 0 h, 3 h, 6 h, 9 h, 12 h, 24 h and 15 days post-inoculation. We characterized a short-time and a-long-time response of the root ubiquitinome. Some proteins as such as flotilins or involved in the translational machinery were less-ubiquitinated, suggesting the facilitation of the de novo synthesis of proteins required to the establishment of arbuscular mycorrhizal symbiosis. In contrast, other proteins as transporters involved in plant nutrition through the direct pathway (i.e., MtPT5) and some enzymes involved in the lipid biosynthesis pathways were more-ubiquitinated, highlighting their putative degradation. In addition, Cdc48 protein accumulates in roots from 9 to 24 h post-inoculation, suggesting a role of Cdc48 in the transitory immune response during plant-fungal interactions. The activity of the UPS is consequently central in the establishment and functioning of arbuscular mycorrhizal symbiosis by modulating protein ubiquitination.</p>\",\"PeriodicalId\":18965,\"journal\":{\"name\":\"Mycorrhiza\",\"volume\":\"35 5\",\"pages\":\"54\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mycorrhiza\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00572-025-01226-3\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycorrhiza","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00572-025-01226-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
Rhizophagus irregularis DAOM197198 modulates the root ubiquitinome of Medicago truncatula in the establishment and functioning of arbuscular mycorrhizal symbiosis.
The regulation of cellular protein homeostasis involves the ubiquitin-proteasome system (UPS) by selectively targeting misfolded or end-of-life proteins. The involvement of the UPS in biotic stresses has been studied mainly in plant-pathogen interactions and poorly in plant-mutualistic interactions. Here, we studied through proteomic approaches (western blot, pull-down of polyubiquinated proteins and nano-LC-MS-MS analysis), the involvement of the UPS during the establishment of the mutualistic interaction between the arbuscular mycorrhizal fungus Rhizophagus irregularis DAOM197198 and the roots of Medicago truncatula, as well as in the established symbiosis. Roots of M. truncatula seedlings were harvested 0 h, 3 h, 6 h, 9 h, 12 h, 24 h and 15 days post-inoculation. We characterized a short-time and a-long-time response of the root ubiquitinome. Some proteins as such as flotilins or involved in the translational machinery were less-ubiquitinated, suggesting the facilitation of the de novo synthesis of proteins required to the establishment of arbuscular mycorrhizal symbiosis. In contrast, other proteins as transporters involved in plant nutrition through the direct pathway (i.e., MtPT5) and some enzymes involved in the lipid biosynthesis pathways were more-ubiquitinated, highlighting their putative degradation. In addition, Cdc48 protein accumulates in roots from 9 to 24 h post-inoculation, suggesting a role of Cdc48 in the transitory immune response during plant-fungal interactions. The activity of the UPS is consequently central in the establishment and functioning of arbuscular mycorrhizal symbiosis by modulating protein ubiquitination.
期刊介绍:
Mycorrhiza is an international journal devoted to research into mycorrhizas - the widest symbioses in nature, involving plants and a range of soil fungi world-wide. The scope of Mycorrhiza covers all aspects of research into mycorrhizas, including molecular biology of the plants and fungi, fungal systematics, development and structure of mycorrhizas, and effects on plant physiology, productivity, reproduction and disease resistance. The scope also includes interactions between mycorrhizal fungi and other soil organisms and effects of mycorrhizas on plant biodiversity and ecosystem structure.
Mycorrhiza contains original papers, short notes and review articles, along with commentaries and news items. It forms a platform for new concepts and discussions, and is a basis for a truly international forum of mycorrhizologists from all over the world.