{"title":"The potential of earthworms and arbuscular mycorrhizal fungi to enhance phytoremediation in heavy metal-contaminated soils: a review.","authors":"Zipeng Chen, Rakhwe Kama, Yiming Cao, Zhen Liu, Jing Qiu, Xu Yang, Huashou Li","doi":"10.1007/s00572-025-01207-6","DOIUrl":null,"url":null,"abstract":"<p><p>Earthworms and arbuscular mycorrhizal fungi (AMF) are two different organisms playing crucial role in soil mechanisms. The integration of earthworms and AMF in phytoremediation strategies leverages their combined ability to improve soil structure, nutrient availability, and microbial activity while modulating metal bioavailability. These entities promote soil-plant interactions and enhance the phytoremediation process of heavy metals-contaminated soil. This review explores the mechanisms by which earthworms and AMF function individually and in combination in the phytoremediation of heavy metal-contaminated soil. The main objectives of this were determine earthworms heavy metals tolerance, absorption and transformation, as well as the synergistic effect between earthworms and plants. Further, the effects of AMF on heavy metals phytoremedoation process was also analyzed as well as the potential interactions between earthworms and AMF on heavy metals removal. This partnership can optimize plant health and remediation efficiency, making it a promising approach for restoring heavy metal-contaminated soils. Thus an integrated empirical study was conducted to summarize the effects earthworms and AMF interactions on heavy metals phytoremediation and to highlight the impact of their individual and combined actions on the phytoremediation paramters. Avenue for further studies towards improved phytoremediation process we discussed. This review emphasize that earthworms and AMF can be employed as biological method to enhance the phytoextraction by hyperaccumulator plants on severely heavy metal-contaminated soil. Alternatively, in moderately and lowly contaminated farmland, the transfer of heavy metals to the above-ground parts of crops can be reduced to promote safe production.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 3","pages":"33"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycorrhiza","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00572-025-01207-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Earthworms and arbuscular mycorrhizal fungi (AMF) are two different organisms playing crucial role in soil mechanisms. The integration of earthworms and AMF in phytoremediation strategies leverages their combined ability to improve soil structure, nutrient availability, and microbial activity while modulating metal bioavailability. These entities promote soil-plant interactions and enhance the phytoremediation process of heavy metals-contaminated soil. This review explores the mechanisms by which earthworms and AMF function individually and in combination in the phytoremediation of heavy metal-contaminated soil. The main objectives of this were determine earthworms heavy metals tolerance, absorption and transformation, as well as the synergistic effect between earthworms and plants. Further, the effects of AMF on heavy metals phytoremedoation process was also analyzed as well as the potential interactions between earthworms and AMF on heavy metals removal. This partnership can optimize plant health and remediation efficiency, making it a promising approach for restoring heavy metal-contaminated soils. Thus an integrated empirical study was conducted to summarize the effects earthworms and AMF interactions on heavy metals phytoremediation and to highlight the impact of their individual and combined actions on the phytoremediation paramters. Avenue for further studies towards improved phytoremediation process we discussed. This review emphasize that earthworms and AMF can be employed as biological method to enhance the phytoextraction by hyperaccumulator plants on severely heavy metal-contaminated soil. Alternatively, in moderately and lowly contaminated farmland, the transfer of heavy metals to the above-ground parts of crops can be reduced to promote safe production.
期刊介绍:
Mycorrhiza is an international journal devoted to research into mycorrhizas - the widest symbioses in nature, involving plants and a range of soil fungi world-wide. The scope of Mycorrhiza covers all aspects of research into mycorrhizas, including molecular biology of the plants and fungi, fungal systematics, development and structure of mycorrhizas, and effects on plant physiology, productivity, reproduction and disease resistance. The scope also includes interactions between mycorrhizal fungi and other soil organisms and effects of mycorrhizas on plant biodiversity and ecosystem structure.
Mycorrhiza contains original papers, short notes and review articles, along with commentaries and news items. It forms a platform for new concepts and discussions, and is a basis for a truly international forum of mycorrhizologists from all over the world.