Haowen Hu;Zhiyu Sun;Chenzhe Du;Qiancheng Zhao;Yufeng Jin;Jian Cui
{"title":"Activation Model of Nano Getter for MEMS Devices Based on Sandwich Structures of Au-Porous Ti-Dense Ti Film","authors":"Haowen Hu;Zhiyu Sun;Chenzhe Du;Qiancheng Zhao;Yufeng Jin;Jian Cui","doi":"10.1109/JMEMS.2025.3526153","DOIUrl":"https://doi.org/10.1109/JMEMS.2025.3526153","url":null,"abstract":"Ti-based nano Nonevaporable getters (NEGs) have become essential materials for maintaining a long-term high vacuum in Micro-Electro-Mechanical System (MEMS) devices. However, it is still a confusing issue how to select the annealing temperature and time for the getter activation on the basis of the required activation level, excessive temperature and time will damage the MEMS devices inside the package. Therefore, the relationship between the activation temperature, activation time and activation level gains more attention since it can give guidance for the vacuum packaging process, which currently lacks an effective quantitative model to be followed. This paper introduces a simple and efficacious model for determining the activation parameters according to Fick’s diffusion law and reports a sandwich getter with an ‘Au-Porous Ti-Dense Ti’ structure based on this model to improve the getter performances. Experimental results indicate that ~50% activation level is achieved for a 3mm <inline-formula> <tex-math>$times 3$ </tex-math></inline-formula>mm sandwich-style getter with 2 hours of 300°C annealing, which is expected to enable a high vacuum for a <inline-formula> <tex-math>$1mu $ </tex-math></inline-formula>L microcavity up to 12 years. These results show close agreement with the model, proving to be valuable for optimizing the recipe of getter activation and providing an efficient way to prevent MEMS device failures.[2024-0165]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"34 2","pages":"204-212"},"PeriodicalIF":2.5,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143801022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling Temperature Effects in a MEMS Ring Gyroscope: Toward Physics-Aware Drift Compensation","authors":"Mehran Hosseini-Pishrobat;Erdinc Tatar","doi":"10.1109/JMEMS.2024.3524796","DOIUrl":"https://doi.org/10.1109/JMEMS.2024.3524796","url":null,"abstract":"Temperature plays an indispensable role in the long-term performance of MEMS gyroscopes, and despite extensive studies in the literature, analytical treatment of temperature effects is still an open problem. This paper, to the best of our knowledge, is the first attempt to address this gap for ring gyroscopes. We start with a superposition principle that disentangles thermal displacement fields from the gyroscope’s nominal vibration. We set forth a geometrically nonlinear variational formulation to obtain the temperature-induced stiffness matrix. We conduct temperature tests on our 3.2 mm-diameter, 58 kHz ring gyroscopes equipped with 16 capacitive stress sensors. The experimental data validate our analytical modeling in the following key aspects: 1) The model accounts for not only changes in material properties but also a less explored factor, thermal stresses. Thanks to a strain interpolation module that leverages the measured stresses, the model predicts frequency variations consistently and captures hysteresis loops arising from residual stresses. Notably, we accurately estimate the deviation of the temperature coefficient of frequency (TCF) from the expected value −30 ppm/°C (based on the widely known −60 ppm/°C dependency of Young’s modulus of silicon). 2) The model is able to capture stiffness couplings in the orders of less than 0.1 N/m (in a 7 kN/m device) and closely predicts the quadrature error and its leakage into the in-phase channel. Additionally, the model incorporates temperature variations of mechanical scale factor, drive mode’s amplitude, damping coupling, and sense mode’s phase in terms of their contribution to the in-phase error. Based on these merits, our model serves as a building block toward drift compensation algorithms encompassing the underlying physics of the temperature effects. [2024-0163]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"34 2","pages":"150-163"},"PeriodicalIF":2.5,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10843100","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143800948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Turnover Temperature Point Adjustment in Mechanically Coupled Single-Crystal Silicon MEMS Resonators","authors":"Yuhao Xiao;Jinzhao Han;Bowen Li;Guoqiang Wu","doi":"10.1109/JMEMS.2024.3524384","DOIUrl":"https://doi.org/10.1109/JMEMS.2024.3524384","url":null,"abstract":"This paper presents an effective approach for adjusting the zero temperature coefficient of frequency (turnover point) in mechanically coupled single-crystal silicon (SCS) microelectromechanical system (MEMS) resonators. The mechanically coupled MEMS resonators are fabricated on a heavily n-type doped SCS with a phosphorus doping concentration of around <inline-formula> <tex-math>$1.0times 10^{20}$ </tex-math></inline-formula> cm<inline-formula> <tex-math>$^ - 3 $ </tex-math></inline-formula> for achieving high turnover points. A turnover point tuning prediction model is derived, showing that the turnover point of mechanically coupled resonators can be represented as the weighted average sum of the product of the effective mass and the second order TCF of each individual resonator, along with its corresponding turnover point. By leveraging mechanical coupling between breathing-ring (BR) mode resonators and length-extensional (LE) or width-extensional (WE) mode resonators, the turnover point of mechanically coupled resonator can be purposely manipulated to above industrial temperature ranges by adjusting the dimensions of the coupled components. Such turnover temperatures can be employed in micro-oven-controlled MEMS oscillators (OCMOs) to achieve excellent frequency stability. The results offer valuable insights into optimizing the frequency-temperature characteristic of MEMS resonators in high-end timing field.[2024-0184]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"34 2","pages":"134-143"},"PeriodicalIF":2.5,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143800757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optical Characterization of Dynamic CMUTs Using Zygo Optical Profilometers: An Alternative to Laser Doppler Vibrometers","authors":"Ahmad Elshenety;Merve Mintas Kucuk;Mehmet Yilmaz","doi":"10.1109/JMEMS.2024.3524004","DOIUrl":"https://doi.org/10.1109/JMEMS.2024.3524004","url":null,"abstract":"Laser Doppler Vibrometers (LDVs) are the most common optical characterization equipment for CMUTs since LDVs characterize both static and dynamic CMUTs in terms of static deflection and resonance frequency, respectively. However, LDVs are not always available for the researchers of ultrasonic transducers. Zygo optical profilometer is also used as an optical characterization equipment for CMUTs but only for static CMUTs. In this study, we show that Zygo optical profilometers could be used to characterize dynamic CMUTs as well. The study shows that Zygo optical profilometers could be an alternative to LDVs performing both static and dynamic analyses of CMUTs. A circular CMUT cell fabricated by wafer bonding technique is characterized using Zygo optical profilometer. The first three resonance frequencies obtained by Zygo optical profilometer match the resonance frequencies obtained by impedance analyzer and ANSYS modal analysis. The equipment could also be used to characterize other ultrasonic transducers such as PMUTs and piezoelectric transducers.[2024-0171]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"34 2","pages":"144-149"},"PeriodicalIF":2.5,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143800755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"2024 Index Journal of Microelectromechanical Systems Vol. 33","authors":"","doi":"10.1109/JMEMS.2024.3522404","DOIUrl":"https://doi.org/10.1109/JMEMS.2024.3522404","url":null,"abstract":"","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 6","pages":"807-828"},"PeriodicalIF":2.5,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10818783","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142905693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guijie Wang;Shenglin Hou;Lifang Ran;Jianhua Li;Bo Zhang;Xiaolong Wen;Najib Kacem;Ashwin A. Seshia
{"title":"A Weakly Coupled Tuning Fork MEMS Electric Field Sensor With High Resolution and Wide Measurement Range","authors":"Guijie Wang;Shenglin Hou;Lifang Ran;Jianhua Li;Bo Zhang;Xiaolong Wen;Najib Kacem;Ashwin A. Seshia","doi":"10.1109/JMEMS.2024.3518622","DOIUrl":"https://doi.org/10.1109/JMEMS.2024.3518622","url":null,"abstract":"High-resolution and sensitive MEMS DC electric field sensors offer the possibility for the integration of detection in multiple fields, such as atmospheric electricity, power grids and biomedical sciences. In this work, a mode-localized sensor prototype based on a double-ended tuning fork design (DETF) is presented. The theoretical derivations and lumped model simulations reveal the key performance enhancements regarding the wide measurement range and high resolution of such a coupled resonator structure. A prototype is fabricated using Silicon-On-insulator (SOI) approaches, which is further tested to achieve a sensitivity of 0.016/(kV/m), a resolution of 21.3 V/m, a measurement range of 200kV/m and a bias instability of 0.29 V/m. The metrics are improved compared to the traditional Euler beam designs and the micro-machined counterparts. This shows the capability to meet the demands for electric field sensing in modern atmospheric electricity, power grids and biomedical sciences, with enhanced sensitivity, measurement range and stability.[2024-0154]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"34 1","pages":"82-91"},"PeriodicalIF":2.5,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Connor A. Watkins;Jaesung Lee;Jonathan P. McCandless;Harris J. Hall;X.-L. Feng Philip
{"title":"Single-Crystal Silicon Thermal-Piezoresistive Resonators as High-Stability Frequency References","authors":"Connor A. Watkins;Jaesung Lee;Jonathan P. McCandless;Harris J. Hall;X.-L. Feng Philip","doi":"10.1109/JMEMS.2024.3515098","DOIUrl":"https://doi.org/10.1109/JMEMS.2024.3515098","url":null,"abstract":"This paper reports on single-crystal silicon (Si) thermal-piezoresistive resonators (TPRs) achieving ~0.2ppb-level frequency stability in phase-locked loop (PLL) measurements. A pair of resonators operating in a balanced-bridge configuration is presented, with one device being driven at resonance and the other used to null the parasitic background responses. The resonance frequency of the driven TPR has been measured over 40 hours with closed-loop continuous tracking by PLL and yields an Allan deviation <inline-formula> <tex-math>$sigma _{text {A}} approx 2.66$ </tex-math></inline-formula>ppb at an averaging time of <inline-formula> <tex-math>$tau approx 4.95$ </tex-math></inline-formula>s which is the best reported value among all Si TPRs studied to date. Further, an external DC power feedback loop is implemented alongside the PLL to enhance the frequency stability of the TPR, to achieve <inline-formula> <tex-math>$sigma _{text {A}} approx 0.236$ </tex-math></inline-formula>ppb at <inline-formula> <tex-math>$tau approx 1.2$ </tex-math></inline-formula>s, the best short-term frequency stability among all reported Si MEMS counterparts. This result suggests that such TPRs with precise DC control can potentially achieve frequency stabilities comparable to, or better than, existing state-of-the-art resonators used in oscillator circuits, with significantly reduced external thermal control requirements and power demands.[2024-0121]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"34 1","pages":"15-23"},"PeriodicalIF":2.5,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MEMS-Oriented Single-Crystalline-Silicon Through-Silicon-Via Based on Filling and Oxidation of Silicon Powders","authors":"Biyun Ling;Minli Cai;Bo Chen;Xiaoyue Wang;Biqing Zhou;Yuhu Xia;Yuwei Han;Yaming Wu","doi":"10.1109/JMEMS.2024.3514902","DOIUrl":"https://doi.org/10.1109/JMEMS.2024.3514902","url":null,"abstract":"This paper, for the first time, introduces filling and oxidation of silicon powders (FOSP) into through-silicon insulation, and develops a single-crystalline-silicon (SCS) through-silicon-via (TSV) for MEMS front-end process. Submicron silicon powders are filled into annular trenches on one side of low-resistivity SCS wafer by a silica-gel scraper, which is followed by surface cleaning to wipe off residual powders and oxidation to turn these trench-filled incompact silicon powders into solidified SiO2 liner respectively. After the same process is carried out on the other side, isolated conductive silicon pillars are formed and strongly anchored to the substrate. The FOSP-based SCS TSV wafer is tolerant to high temperature and acid, and hardly influenced by coefficient of thermal expansion (CTE) mismatch. Thinning step is omitted in its fabrication process, which guarantees low total thickness variation (TTV). A 6-inch FOSP-based SCS TSV wafer with <inline-formula> <tex-math>$380mu $ </tex-math></inline-formula>m thickness and 20480 vias has been developed successfully. Its structure strength, air-tightness, TTV and warpage are studied. Measurement results show that the leakage current per TSV is about 0.2pA at 20V, and the resistance of conductive silicon pillar ranges from <inline-formula> <tex-math>$50Omega $ </tex-math></inline-formula> to <inline-formula> <tex-math>$140Omega $ </tex-math></inline-formula> (<inline-formula> <tex-math>$0.017sim 0.022Omega cdot $ </tex-math></inline-formula>cm resistivity and <inline-formula> <tex-math>$66mu $ </tex-math></inline-formula>m/<inline-formula> <tex-math>$88mu $ </tex-math></inline-formula>m diameter). Furthermore, with a testing process, the FOSP-based SCS TSV wafer is proven qualified for metal thermocompression bonding, forming an integrated wafer that can go through grinding and deep reactive ion etching (DRIE). The proposed SCS TSV technology is not restrained by wafer thickness and depth-to-width ratio of DRIE, so it can be applied to large-sized SCS wafer.[2024-0127]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"34 1","pages":"73-81"},"PeriodicalIF":2.5,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sangho Bang;Chaerin Oh;Sang-Mok Lee;Subeen Kim;Taemin Lee;Seunghyeon Nam;Joontaek Jung;Hyunjoo Jenny Lee
{"title":"Fabrication of Capacitive Micromachined Ultrasonic Transducers With High-k Insulation Layer Using Silicon Fusion Bonding","authors":"Sangho Bang;Chaerin Oh;Sang-Mok Lee;Subeen Kim;Taemin Lee;Seunghyeon Nam;Joontaek Jung;Hyunjoo Jenny Lee","doi":"10.1109/JMEMS.2024.3516955","DOIUrl":"https://doi.org/10.1109/JMEMS.2024.3516955","url":null,"abstract":"With its excellent yield and potential for mass production, a capacitive micromachined ultrasonic transducer (CMUT) is a promising alternative solution to conventional piezoelectric ultrasound transducers. However, as CMUTs require high bias voltage for operation, reducing the voltage is a critical issue in the industry to overcome the problems of reliability and the need for high-voltage driving circuitry. One of the promising methods to reduce the high bias voltage is to increase the dielectric constant by replacing the insulation layer with a high-k material. Here, we present a new fabrication method for the high-k insulation layer CMUT that maintains the reliability and advantages of silicon wafer-bonded CMUT. Notably, our proposed process eliminates the need for additional photolithography steps to replace the insulation layer with high-k material compared to the conventional CMUT fabrication. In contrast to the conventional CMUT, which employs silicon dioxide film for insulation, our high-k CMUT exhibits a reduction in pull-in voltage of 11.3%. These results suggest the potential for enhanced sensitivity in ultrasonic imaging applications. [2024-0153]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"34 1","pages":"65-72"},"PeriodicalIF":2.5,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Heat-Depolymerizable Tethers for Microelectromechanical System Assembly","authors":"Oluwatoyin Atikekeresola;C. K. Harnett","doi":"10.1109/JMEMS.2024.3511476","DOIUrl":"https://doi.org/10.1109/JMEMS.2024.3511476","url":null,"abstract":"Microelectromechanical systems (MEMS) assembly into packages that interface with the environment is critical in electronic sensor applications ranging from soft biomedical systems to telecommunications. This article presents a novel process using heat-depolymerizable polyethylene carbonate (QPAC-25) as a sacrificial tether, and demonstrates it for assembling wafer-bound MEMS onto wires. The assembly mechanism is thermal removal of the tether, allowing a strained layer to pop up from the substrate and make electrical and mechanical contact with the wire. We detail the QPAC-25 fabrication procedures, characterize the relationship between QPAC-25 thickness and spin speed and determine a route to pattern QPAC-25 without a metal hard mask or photosensitizers.[2024-0157]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"34 1","pages":"1-3"},"PeriodicalIF":2.5,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143106764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}