Almur A. S. Rabih;Seyedfakhreddin Nabavi;Michaël Ménard;Frederic Nabki
{"title":"Multi Degrees-of-Freedom Hybrid Piezoelectric-Electrostatic MEMS Actuators Integrated With Displacement Sensors","authors":"Almur A. S. Rabih;Seyedfakhreddin Nabavi;Michaël Ménard;Frederic Nabki","doi":"10.1109/JMEMS.2023.3341039","DOIUrl":"https://doi.org/10.1109/JMEMS.2023.3341039","url":null,"abstract":"This work presents novel multi degrees-of-freedom (DOF) actuators based on piezoelectric and electrostatic actuation to generate both in-plane and out-of-plane motions, intended to position a suspended optical waveguide for chip-to-chip alignment in photonic integrated circuits. In this context, the mechanical structures of the actuators with a suspended platform to carry the waveguide, are designed to house aluminum nitride (AlN) as the piezoelectric material for generating out-of-plane motion and a comb-drive, whose fixed and moveable fingers are positioned on the same layer for in-plane motion. Two distinct designs, i.e., a 2-DOF design with motions along the Z-and Y-axes and a 3-DOF design with motions along the Z-, Y-, and X-axes were fabricated and tested. Both designs include capacitive-based displacement sensors to track the motions in Z-and Y-axes. Experimental results at ±60 V indicate that 3 devices of each design give an average displacement of 3.16 ± \u0000<inline-formula> <tex-math>$0.34~mu text{m}$ </tex-math></inline-formula>\u0000 and 0.63 ± \u0000<inline-formula> <tex-math>$0.04~mu text{m}$ </tex-math></inline-formula>\u0000 in the Z-axis for the 2-DOF and 3-DOF designs, respectively. For the Y-axis at 120 V, the average results for the two designs respectively were found to be 3.06 ± \u0000<inline-formula> <tex-math>$0.17~mu text{m}$ </tex-math></inline-formula>\u0000 and 7.38 ± \u0000<inline-formula> <tex-math>$0.29~mu text{m}$ </tex-math></inline-formula>\u0000, with the ability to extended the later to \u0000<inline-formula> <tex-math>$10.69~mu text{m}$ </tex-math></inline-formula>\u0000 at 140 V. In the X-axis, the 3-DOF design can produce total of 300 nm of displacement at ±100 V. The capacitance measurements were found to correlate well with the tracked displacement. Furthermore, simultaneous activation of more than one actuator could mitigate misalignment and align the platform with a fixed surface. [2023-0148]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 1","pages":"21-36"},"PeriodicalIF":2.7,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139676276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"3D Flexible Wind Sensor With its Optimization and Environmental Effect","authors":"Zhenxiang Yi;Yu Wan;Ming Qin;Qing-An Huang","doi":"10.1109/JMEMS.2023.3328590","DOIUrl":"https://doi.org/10.1109/JMEMS.2023.3328590","url":null,"abstract":"This paper proposes a new three-dimensional (3D) flexible wind sensor by utilizing dual-layer differential capacitors. The deformation of the sensor caused by wind leads to eight capacitances variation, which can be applied to obtain the wind speed along the x, y, and z axes (vx, vy and vz). Consequently, the 3D wind speed and direction are calculated by the vector synthesis. The feasibility of this measurement principle was verified by simulation. Then, the sensor was fabricated consisting of two windward pillar, four electrode layers, and two supporting layers, which were produced by polydimethylsiloxane (PDMS) with different Young’s modulus. Experiments demonstrated that the sensor can measure 3D wind speed and direction with the dynamic range of 0-23.9m/s. The average errors of wind speed measurement in XY, XZ and YZ planes are close to 0.58 m/s, 0.42 m/s, and 0.53 m/s, respectively, while the average errors of wind direction measurement are about 6.63°, 4.03°, and 5.65° respectively. Furthermore, temperature effect, as well as humidity effect, of the sensor was also investigated. The initial capacitances of the sensor are positively correlated with the temperature and humidity, and the slope are on the order of 6.21fF\u0000<inline-formula> <tex-math>$cdot ^{circ }text{C}^{-1}$ </tex-math></inline-formula>\u0000, 3.21fF\u0000<inline-formula> <tex-math>$cdot $ </tex-math></inline-formula>\u0000%RH−1, respectively. Moreover, trenches were fabricated to optimize the sensor’s sensitivity, which has been verified by experiments. [2023-0075]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 1","pages":"37-45"},"PeriodicalIF":2.7,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139676305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"2023 Index Journal of Microelectromechanical Systems Vol. 31","authors":"","doi":"10.1109/JMEMS.2023.3343158","DOIUrl":"https://doi.org/10.1109/JMEMS.2023.3343158","url":null,"abstract":"","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"32 6","pages":"649-666"},"PeriodicalIF":2.7,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10360136","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138633796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiashuai Xu;Zong Liu;Junyan Zheng;Fangsheng Qian;Man Wong;Yansong Yang
{"title":"Sealed-Cavity Bulk Acoustic Resonator for Subsequent Fabrication and Higher Order Mode","authors":"Jiashuai Xu;Zong Liu;Junyan Zheng;Fangsheng Qian;Man Wong;Yansong Yang","doi":"10.1109/JMEMS.2023.3338250","DOIUrl":"https://doi.org/10.1109/JMEMS.2023.3338250","url":null,"abstract":"This focuses on developing a new platform for the thin-film bulk acoustic wave (BAW) resonator, which features predefined sealed cavities, self-formed acoustic boundaries, and compatibility with subsequent fabrication. Different from conventional BAW resonator fabrication methods, this work has simplified fabrication by using silicon migration technology: building freely predefined cavities with self-formed acoustic boundaries without patterning the piezoelectric layer in only two steps (etching and annealing). Additionally, the sealed cavity is sturdy enough to be compatible with subsequent hetero-integrating with other devices. For higher frequency and better electromechanical coupling (\u0000<inline-formula> <tex-math>$K^{2}$ </tex-math></inline-formula>\u0000), the proposed platform can excite the second-order asymmetric Lamb wave mode (A2) in scandium-doped aluminum nitride (Al1–xScxN) film with an optimized stress field. The fabricated devices demonstrate S1 and A2 resonant modes at 1.58 GHz and 3.52 GHz with electromechanical coupling coefficients of 1.47% and 5.12%, respectively. [2023-0185]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 1","pages":"3-5"},"PeriodicalIF":2.7,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139676301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chuan-Hui Ou;Nguyen Van Toan;Yao-Chuan Tsai;Ioana Voiculescu;Masaya Toda;Takahito Ono
{"title":"A Large-Stroke 3-DOF Micromirror With Novel Lorentz Force-Based Actuators Utilizing Metallic Glass Thin Film","authors":"Chuan-Hui Ou;Nguyen Van Toan;Yao-Chuan Tsai;Ioana Voiculescu;Masaya Toda;Takahito Ono","doi":"10.1109/JMEMS.2023.3337333","DOIUrl":"https://doi.org/10.1109/JMEMS.2023.3337333","url":null,"abstract":"An electromagnetic tip-tilt-piston micromirror with a large stroke is presented. This research introduced a novel actuation structure, based on a spring made from conductive metallic glass with excellent mechanical properties. For the first time, two functional elements, an electromagnetic actuation element and a mechanical support structure, were successfully integrated into a single-layer spring, made of metallic glass. With this novel actuator, the performance of stroke and angle controllability is remarkably improved. The fabricated device can achieve a \u0000<inline-formula> <tex-math>$418 ~mu text{m}$ </tex-math></inline-formula>\u0000 static stroke in upward direction. Furthermore, the tilting angles of the micromirror can be controlled with maximum accuracy of 0.05°/mA. The device is robust and has miniature dimensions, comparable or smaller, than existing electromagnetic micromirror dimensions published in literature. The displacement values of the micromirror are larger, compared to state-of-the–art electromagnetic micromirrors, which usually have strokes under \u0000<inline-formula> <tex-math>$300 ~mu text{m}$ </tex-math></inline-formula>\u0000 and do not have angle control mechanism. In spectrometer applications, the micromirror with a large stroke and controllable angle allows spectrometers to achieve higher resolution. These special qualities of the micromirror, will provide efficient, and reliable spatial light modulation required for interferometer applications. [2023-0104]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 1","pages":"46-53"},"PeriodicalIF":2.7,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139676304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Monolithically Integrated 3D Atomic Chip for Quantum Optical Magnetometry","authors":"Ziji Wang;Junming Wu;Gong Sun;Jintang Shang","doi":"10.1109/JMEMS.2023.3337513","DOIUrl":"https://doi.org/10.1109/JMEMS.2023.3337513","url":null,"abstract":"A monolithically integrated 3D atomic chip for weak magnetic field detection is presented in this work. A 14.8 ohm MEMS thin film non-magnetic micro heater is monolithically integrated onto a micro spherical alkali vapor cell to realize on-chip atomic density control. Both magnetic and thermal characteristics of the non-magnetic heater are analyzed theoretically. Based on the heater-integrated atomic chip, a chip-scale scalar atomic magnetometer is realized and tested in a magnetic shield. Effect of heating noise suppression methods including high frequency heating, noise-shifting heating and high precision feedback control on magnetometer performance is experimentally analyzed. By further analyzing and eliminating glitch noise in output signal, magnetic noise floor of the constructed device reduced by over 88 %. The proposed atomic chip is especially advantageous for future low-cost and high integration quantum optical magnetometry. [2023-0152]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 1","pages":"102-109"},"PeriodicalIF":2.7,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139676286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Roll to Roll Imprinting PDMS Microstructures Under Reduced Ambient Pressures","authors":"Olli-Heikki Huttunen;Johanna Hiitola-Keinänen;Jarno Petäjä;Eero Hietala;Hannu Lindström;Jussi Hiltunen","doi":"10.1109/JMEMS.2023.3336740","DOIUrl":"https://doi.org/10.1109/JMEMS.2023.3336740","url":null,"abstract":"High-volume manufacturing of microstructures is essential for the uptake of the related scientific results for commercial use and also if hundreds or thousands of devices with repeatable performance are needed during the large-scale experimental research. Polydimethyl siloxane (PDMS) is one of the most widely used materials for academia to prepare microfluidic test devices. This has also motivated the development of roll-to-roll imprinting towards the fabrication of PDMS-based devices at high volumes. The gas bubble entrapping during the replication process has remained an issue resulting in defects in the microstructure. Performing imprinting in vacuum is a well-known method to avoid bubbles but it has not been applied in roll-to-roll processing. In this work we demonstrated a reduced ambient pressure roll to roll imprinting process using PDMS silicone elastomer as imprint resist. We observed the reduction in the number of bubble-originated defects in individual micro-features from 100 % to < 1 % when the ambient pressure was reduced from 1 atm to 1/8 atm. [2023-0063]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 1","pages":"95-101"},"PeriodicalIF":2.7,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10342677","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139676267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fangzheng Li;Dandan Liu;Le Gao;Bingyang Cai;Lujia Yang;Yuan Wang;Chun Zhao;Wenjie Wu;Liangcheng Tu
{"title":"Novel Area-Changed Capacitive Methods for Simultaneous Displacement Transducing and Force Balance in a Nano-g MEMS Accelerometer","authors":"Fangzheng Li;Dandan Liu;Le Gao;Bingyang Cai;Lujia Yang;Yuan Wang;Chun Zhao;Wenjie Wu;Liangcheng Tu","doi":"10.1109/JMEMS.2023.3334297","DOIUrl":"https://doi.org/10.1109/JMEMS.2023.3334297","url":null,"abstract":"High-precision MEMS accelerometers with nano-g resolution are emergent instruments for geophysical applications and proved their competence in terms of functionality. The electromagnetic actuator, which serves as an auxiliary component in nano-g MEMS accelerometers for improving the dynamic response, faces the challenges of process incompatibility, temperature sensitivity, and large form factor. Thereby, this paper proposes an area-changed capacitive method for both displacement transducing and force balance in a nano-g MEMS accelerometer, aiming to address those posed challenges and provide favourable performance. Thanks to the allowed large displacement range in the sensitive direction of the proposed device, the area-changed capacitive mechanism is able to be integrated with a highly-sensitive quasi-zero stiffness spring-mass structure. As a result, the fabricated force-balance MEMS accelerometer attains a calibrated self-noise of 1.3 ng/\u0000<inline-formula> <tex-math>$surd $ </tex-math></inline-formula>\u0000Hz, which is one of the most sensitive MEMS-based accelerometers reported to date. The settling time, on the other hand, is reduced to 0.5 s with the electrostatic closed-loop control featuring the proposed subject, compared to 15.7 s in the open-loop configuration. In addition, the critical acceleration input at the boundary of the “pull-in” is calculated as 5.4 g, which is adaptable to most geophysical applications. This work is of considerable potential in geophysical applications such as earthquake monitoring or gravity measurements, and promising a high-performance closed-loop MEMS accelerometer. [2023-0161]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 1","pages":"12-20"},"PeriodicalIF":2.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139676274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tapio Pernu;Teuvo Sillanpää;Cyril Baby Karuthedath;Abhilash Thanniyil Sebastian
{"title":"Development of PMUT-Based High Sensitivity Gas Flow Sensor","authors":"Tapio Pernu;Teuvo Sillanpää;Cyril Baby Karuthedath;Abhilash Thanniyil Sebastian","doi":"10.1109/JMEMS.2023.3334497","DOIUrl":"https://doi.org/10.1109/JMEMS.2023.3334497","url":null,"abstract":"Piezoelectric micromachined ultrasound transducers (PMUTs) and a high sensitivity PMUT-based gas flowmeter were designed, fabricated and characterised. In this work a single side measurement geometry is introduced for a simple PMUT assembly and enabling high sensitivity for the low flowrate measurement. While PMUT-based gas flow sensors of previous work serve higher flowrate ranges, the advantage of our system is that its novel sensor and measurement geometry is designed specifically for low flow rates to ensure high sensitivity in the low-flow domain. The characterised flowmeter measurement range is ±50 sccm with a non-linearity error of 0.015%. A typical flow error within the measurement range of ±50 sccm is ±0.7% from the flow reading and ±0.2% from the full-scale (±50 sccm) flowrate. [2023-0162]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 1","pages":"88-94"},"PeriodicalIF":2.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139676331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Member ad suite","authors":"","doi":"10.1109/JMEMS.2023.3334533","DOIUrl":"https://doi.org/10.1109/JMEMS.2023.3334533","url":null,"abstract":"","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"32 6","pages":"646-646"},"PeriodicalIF":2.7,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10336359","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138468132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}