Single-Crystal Silicon Thermal-Piezoresistive Resonators as High-Stability Frequency References

IF 2.5 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Connor A. Watkins;Jaesung Lee;Jonathan P. McCandless;Harris J. Hall;X.-L. Feng Philip
{"title":"Single-Crystal Silicon Thermal-Piezoresistive Resonators as High-Stability Frequency References","authors":"Connor A. Watkins;Jaesung Lee;Jonathan P. McCandless;Harris J. Hall;X.-L. Feng Philip","doi":"10.1109/JMEMS.2024.3515098","DOIUrl":null,"url":null,"abstract":"This paper reports on single-crystal silicon (Si) thermal-piezoresistive resonators (TPRs) achieving ~0.2ppb-level frequency stability in phase-locked loop (PLL) measurements. A pair of resonators operating in a balanced-bridge configuration is presented, with one device being driven at resonance and the other used to null the parasitic background responses. The resonance frequency of the driven TPR has been measured over 40 hours with closed-loop continuous tracking by PLL and yields an Allan deviation <inline-formula> <tex-math>$\\sigma _{\\text {A}} \\approx 2.66$ </tex-math></inline-formula>ppb at an averaging time of <inline-formula> <tex-math>$\\tau \\approx 4.95$ </tex-math></inline-formula>s which is the best reported value among all Si TPRs studied to date. Further, an external DC power feedback loop is implemented alongside the PLL to enhance the frequency stability of the TPR, to achieve <inline-formula> <tex-math>$\\sigma _{\\text {A}} \\approx 0.236$ </tex-math></inline-formula>ppb at <inline-formula> <tex-math>$\\tau \\approx 1.2$ </tex-math></inline-formula>s, the best short-term frequency stability among all reported Si MEMS counterparts. This result suggests that such TPRs with precise DC control can potentially achieve frequency stabilities comparable to, or better than, existing state-of-the-art resonators used in oscillator circuits, with significantly reduced external thermal control requirements and power demands.[2024-0121]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"34 1","pages":"15-23"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10817093/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper reports on single-crystal silicon (Si) thermal-piezoresistive resonators (TPRs) achieving ~0.2ppb-level frequency stability in phase-locked loop (PLL) measurements. A pair of resonators operating in a balanced-bridge configuration is presented, with one device being driven at resonance and the other used to null the parasitic background responses. The resonance frequency of the driven TPR has been measured over 40 hours with closed-loop continuous tracking by PLL and yields an Allan deviation $\sigma _{\text {A}} \approx 2.66$ ppb at an averaging time of $\tau \approx 4.95$ s which is the best reported value among all Si TPRs studied to date. Further, an external DC power feedback loop is implemented alongside the PLL to enhance the frequency stability of the TPR, to achieve $\sigma _{\text {A}} \approx 0.236$ ppb at $\tau \approx 1.2$ s, the best short-term frequency stability among all reported Si MEMS counterparts. This result suggests that such TPRs with precise DC control can potentially achieve frequency stabilities comparable to, or better than, existing state-of-the-art resonators used in oscillator circuits, with significantly reduced external thermal control requirements and power demands.[2024-0121]
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Microelectromechanical Systems
Journal of Microelectromechanical Systems 工程技术-工程:电子与电气
CiteScore
6.20
自引率
7.40%
发文量
115
审稿时长
7.5 months
期刊介绍: The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信