Connor A. Watkins;Jaesung Lee;Jonathan P. McCandless;Harris J. Hall;X.-L. Feng Philip
{"title":"Single-Crystal Silicon Thermal-Piezoresistive Resonators as High-Stability Frequency References","authors":"Connor A. Watkins;Jaesung Lee;Jonathan P. McCandless;Harris J. Hall;X.-L. Feng Philip","doi":"10.1109/JMEMS.2024.3515098","DOIUrl":null,"url":null,"abstract":"This paper reports on single-crystal silicon (Si) thermal-piezoresistive resonators (TPRs) achieving ~0.2ppb-level frequency stability in phase-locked loop (PLL) measurements. A pair of resonators operating in a balanced-bridge configuration is presented, with one device being driven at resonance and the other used to null the parasitic background responses. The resonance frequency of the driven TPR has been measured over 40 hours with closed-loop continuous tracking by PLL and yields an Allan deviation <inline-formula> <tex-math>$\\sigma _{\\text {A}} \\approx 2.66$ </tex-math></inline-formula>ppb at an averaging time of <inline-formula> <tex-math>$\\tau \\approx 4.95$ </tex-math></inline-formula>s which is the best reported value among all Si TPRs studied to date. Further, an external DC power feedback loop is implemented alongside the PLL to enhance the frequency stability of the TPR, to achieve <inline-formula> <tex-math>$\\sigma _{\\text {A}} \\approx 0.236$ </tex-math></inline-formula>ppb at <inline-formula> <tex-math>$\\tau \\approx 1.2$ </tex-math></inline-formula>s, the best short-term frequency stability among all reported Si MEMS counterparts. This result suggests that such TPRs with precise DC control can potentially achieve frequency stabilities comparable to, or better than, existing state-of-the-art resonators used in oscillator circuits, with significantly reduced external thermal control requirements and power demands.[2024-0121]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"34 1","pages":"15-23"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10817093/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper reports on single-crystal silicon (Si) thermal-piezoresistive resonators (TPRs) achieving ~0.2ppb-level frequency stability in phase-locked loop (PLL) measurements. A pair of resonators operating in a balanced-bridge configuration is presented, with one device being driven at resonance and the other used to null the parasitic background responses. The resonance frequency of the driven TPR has been measured over 40 hours with closed-loop continuous tracking by PLL and yields an Allan deviation $\sigma _{\text {A}} \approx 2.66$ ppb at an averaging time of $\tau \approx 4.95$ s which is the best reported value among all Si TPRs studied to date. Further, an external DC power feedback loop is implemented alongside the PLL to enhance the frequency stability of the TPR, to achieve $\sigma _{\text {A}} \approx 0.236$ ppb at $\tau \approx 1.2$ s, the best short-term frequency stability among all reported Si MEMS counterparts. This result suggests that such TPRs with precise DC control can potentially achieve frequency stabilities comparable to, or better than, existing state-of-the-art resonators used in oscillator circuits, with significantly reduced external thermal control requirements and power demands.[2024-0121]
期刊介绍:
The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.