Journal of microencapsulation最新文献

筛选
英文 中文
Isolation and characterization of medicinal plant-based extracellular vesicles as nano delivery systems for ascorbic acid. 抗坏血酸纳米递送系统药用植物细胞外囊泡的分离与表征。
IF 3 4区 医学
Journal of microencapsulation Pub Date : 2024-12-23 DOI: 10.1080/02652048.2024.2443430
Zainab Muhammad, Suleiman A Muhammad, Abdullahi Y Abbas, Mohammed Achor, Samson A Adeyemi, Yahya E Choonara, Yusuf Saidu, Lawal S Bilbis
{"title":"Isolation and characterization of medicinal plant-based extracellular vesicles as nano delivery systems for ascorbic acid.","authors":"Zainab Muhammad, Suleiman A Muhammad, Abdullahi Y Abbas, Mohammed Achor, Samson A Adeyemi, Yahya E Choonara, Yusuf Saidu, Lawal S Bilbis","doi":"10.1080/02652048.2024.2443430","DOIUrl":"https://doi.org/10.1080/02652048.2024.2443430","url":null,"abstract":"<p><strong>Aim: </strong>Plant-derived extracellular vesicles (EVs) are natural nanovesicles for drug delivery. This study isolated and characterised EVs from medicinal plants as delivery vehicles.</p><p><strong>Methods: </strong>Precipitation method was employed for the isolation and characterised using DLS, SEM, and TEM. The encapsulation efficiency (EE) and antioxidant activity of ascorbic acid (AA)-EVs were evaluated.</p><p><strong>Results: </strong>The total yields of lyophilised vesicles per weight of the sample were 6.0, 8.6 and 9.2 mg/g for garlic, turmeric and ginger, respectively. Mean size of garlic-derived EVs, ginger-derived EVs, and turmeric-derived EVs were 101.0 ± 6.7, 226.4 ± 62.2 and 90.7 ± 2.5 nm, respectively. The zeta potential of the EVs was between -33.2 ± 10.9 and -28.8 ± 8.43 mV. Spherical morphology of the nanovesicles was confirmed by SEM and TEM. The EE of the EVs was between 78.1 ± 2.8% and 87.2 ± 1.4%.</p><p><strong>Conclusion: </strong>Overall, the antioxidant activity of AA-loaded EVs was better compared to free AA. This study provides evidence that these medicinal plants are rich sources for developing nanotherapeutics.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"1-12"},"PeriodicalIF":3.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Encapsulation of anti-VEGF nanobody into niosome nanoparticles: a novel approach to enhance circulation half life and efficacy. 将抗vegf纳米体包封到纳米粒中:一种提高循环半衰期和疗效的新方法。
IF 3 4区 医学
Journal of microencapsulation Pub Date : 2024-12-23 DOI: 10.1080/02652048.2024.2443435
Mohsen Chiani, Raha Abedini, Reza Ahangari-Cohan, Mahdi Behdani, Seyed Mahmoud Barzi, Nastaran Mohseni, Fatemeh Kazemi-Lomedasht
{"title":"Encapsulation of anti-VEGF nanobody into niosome nanoparticles: a novel approach to enhance circulation half life and efficacy.","authors":"Mohsen Chiani, Raha Abedini, Reza Ahangari-Cohan, Mahdi Behdani, Seyed Mahmoud Barzi, Nastaran Mohseni, Fatemeh Kazemi-Lomedasht","doi":"10.1080/02652048.2024.2443435","DOIUrl":"https://doi.org/10.1080/02652048.2024.2443435","url":null,"abstract":"<p><p>This study aimed to encapsulate an anti-VEGF nanobody (Nb) within niosome nanoparticles (NNPs) to enhance its circulation half life. Key parameters such as encapsulation efficiency, stability, Nb release, cytotoxicity, and cell migration inhibition in HUVEC cells were evaluated, along with pharmacokinetic studies in mice. Nb-loaded NNPs (Nb-NNPs) were successfully prepared with an encapsulation efficiency of 78.3 ± 3.2% and demonstrated stability over one month. <i>In vitro</i> assays revealed that Nb-NNPs enhanced cytotoxicity and significantly reduced cell migration in HUVEC cells compared to free Nb (<i>P</i> < 0.05). Pharmacokinetic studies in mice demonstrated a dramatically reduced elimination rate constant (0.025 h<sup>-1</sup> vs. 0.843 h<sup>-1</sup>) and an extended terminal half life (27.721 h vs. 0.822 h), indicating slower clearance and prolonged systemic presence. In conclusion, these findings underscore the potential of Nb-NNPs to provide sustained and potent therapeutic effects, contributing valuable insights for advancing targeted therapeutic strategies.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"1-10"},"PeriodicalIF":3.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements in microneedle technology: current status and next-generation innovations. 微针技术的进步:现状与下一代创新。
IF 3 4区 医学
Journal of microencapsulation Pub Date : 2024-12-01 Epub Date: 2024-10-30 DOI: 10.1080/02652048.2024.2418613
Siddhant Kumar, Rahul Shukla
{"title":"Advancements in microneedle technology: current status and next-generation innovations.","authors":"Siddhant Kumar, Rahul Shukla","doi":"10.1080/02652048.2024.2418613","DOIUrl":"10.1080/02652048.2024.2418613","url":null,"abstract":"<p><p>Microneedle technology is a pivotal component of third-generation transdermal drug delivery systems featuring tiny needles that create temporary microscopic channels in the stratum corneum which facilitate drug penetration in the dermis. This review offers a detailed examination of the current types of microneedles, including solid, coated, dissolving, hollow, and swelling microneedles, along with their preparation techniques as well as their benefits and challenges. Use of 3D printing technology is especially gaining significant attention due to its ability to achieve the high dimensional accuracy required for precise fabrication. Additionally, its customisability presents significant potential for exploring new designs and creating personalised microneedles products. Furthermore, this review explores next generation microneedles, especially stimuli-responsive microneedle, bioinspired microneedle and microneedles combined with other transdermal technology like sonophoresis, electroporation and iontophoresis. Regulatory aspects, characterisation techniques, safety considerations, and cost factors have also been addressed which are crucial for translation from lab to the market.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"782-803"},"PeriodicalIF":3.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142545968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of cefixime loaded PCL/HPMC blend nanoparticles: a controlled release study and in vitro anti-bacterial evaluation. 合成负载头孢克肟的 PCL/HPMC 混合纳米颗粒:控释研究和体外抗菌评估。
IF 3 4区 医学
Journal of microencapsulation Pub Date : 2024-12-01 Epub Date: 2024-11-12 DOI: 10.1080/02652048.2024.2427292
Yashvi Naik, Hem N Naik, Jay Rai, Rushabh Shah, Smita Jauhari, Anand J Patel
{"title":"Synthesis of cefixime loaded PCL/HPMC blend nanoparticles: a controlled release study and <i>in vitro</i> anti-bacterial evaluation.","authors":"Yashvi Naik, Hem N Naik, Jay Rai, Rushabh Shah, Smita Jauhari, Anand J Patel","doi":"10.1080/02652048.2024.2427292","DOIUrl":"10.1080/02652048.2024.2427292","url":null,"abstract":"<p><strong>Aim: </strong>To enhance cefixime's effectiveness and address drug delivery challenges like concentration at the site, dose, and time, present study investigated the impact of polymer blends on cefixime's <i>in vitro</i> release profile.</p><p><strong>Methods: </strong>Cefixime-loaded nanoparticles were prepared via a modified solvent evaporation method, forming a W/O/W double emulsion. Characterisation included FT-IR, zeta potential, TGA, TEM, and XRD, with in vitro studies and kinetic models used to analyse the release mechanism.</p><p><strong>Results: </strong>The PH-4 nanoparticle formulation (80:20 PCL/HPMC, 0.5% PVA) achieved an 81% loading rate, no adverse effects, and a controlled release of 84.66%±2.53 over 30 days. It showed stable physicochemical properties, with <i>in vitro</i> antibacterial tests revealing inhibition zones of 27.4 ± 2.12 mm for <i>E. coli</i> and 17.2 ± 2.23 mm for <i>S. aureus</i> at 12 hours.</p><p><strong>Conclusion: </strong>Based on the findings, developed nanoparticulate system containing PCL/HPMC demonstrates its efficacy and safety as a controlled drug delivery method for antibiotics like cefixime.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"844-855"},"PeriodicalIF":3.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biodegradable polymeric nanocomposite containing phloretin for enhanced oral bioavailability and improved myocardial ischaemic recovery. 生物可降解聚合物纳米复合材料,含有可提高口服生物利用度和改善心肌缺血恢复的酞丁胺。
IF 3 4区 医学
Journal of microencapsulation Pub Date : 2024-12-01 Epub Date: 2024-10-21 DOI: 10.1080/02652048.2024.2418608
Prasanti Sharma, Trishna Bal, Sandeep Kumar Singh, Neelima Sharma
{"title":"Biodegradable polymeric nanocomposite containing phloretin for enhanced oral bioavailability and improved myocardial ischaemic recovery.","authors":"Prasanti Sharma, Trishna Bal, Sandeep Kumar Singh, Neelima Sharma","doi":"10.1080/02652048.2024.2418608","DOIUrl":"10.1080/02652048.2024.2418608","url":null,"abstract":"<p><strong>Aim: </strong>The study aimed to enhance phloretin's oral absorption and systemic availability through nanoencapsulation within biodegradable polymers, improving its anti-oxidant and cardioprotective potential.</p><p><strong>Methods: </strong>Phloretin-loaded polymeric nanocomposites were prepared using ionic gelation and optimised for yield, encapsulation, loading, particle size, PdI and zeta potential. The formulation was characterised by FTIR, XRD, FESEM and MS. <i>In-vitro</i> drug release, stability, pharmacokinetics, biodistribution, anti-oxidant capacity, haemolysis and both <i>in-vitro</i> and <i>in-vivo</i> assessments were conducted in an ischaemia-induced rat model.</p><p><strong>Results: </strong>The average particle size, zeta potential, encapsulation and drug loading of the optimised nanoparticles were 105.8 ± 1.92 nm, -41.5 ± 1.10 mV, 92.36 ± 0.01% and 18.47 ± 0.38%, respectively. Nano-phloretin enhanced oral bioavailability, anti-oxidant capacity. <i>In-vivo,</i> it reduced myocardial infarct size by ∼46% versus ∼13% for free phloretin, showing significant cardiomyocyte protection and ROS suppression.</p><p><strong>Conclusion: </strong>The study demonstrates polymer-based nanoparticles as effective oral drug delivery systems capable of enhancing both systemic bioavailability and therapeutic efficacy of the encapsulated drug.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"754-769"},"PeriodicalIF":3.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Paliperidone-loaded nose to brain targeted NLCS: optimisation, evaluation, histopathology and pharmacokinetic estimation for schizophernia. 帕潘立酮(Paliperidone-loaded)鼻脑靶向 NLCS:用于精神分裂症的优化、评估、组织病理学和药代动力学估算。
IF 3 4区 医学
Journal of microencapsulation Pub Date : 2024-12-01 Epub Date: 2024-11-16 DOI: 10.1080/02652048.2024.2426545
Manish Ashok Khedkar, Vipin Sharma, Meraj Anjum, Sanjay Singh, Kamal Shah, Perwez Alam, Hitesh Kumar Dewangan
{"title":"Paliperidone-loaded nose to brain targeted NLCS: optimisation, evaluation, histopathology and pharmacokinetic estimation for schizophernia.","authors":"Manish Ashok Khedkar, Vipin Sharma, Meraj Anjum, Sanjay Singh, Kamal Shah, Perwez Alam, Hitesh Kumar Dewangan","doi":"10.1080/02652048.2024.2426545","DOIUrl":"10.1080/02652048.2024.2426545","url":null,"abstract":"<p><p>Study was to develop a nanostructured-lipid-careers (NLCs) of paliperidone (PLP) for nose-to-brain targeting. NLCs was prepared by sonication, high-shear homogenisation method, and characterised their mean diameter, PDI, zeta-potential, morphology (by SEM, TEM and AFM), entrapment efficiency, drug loading, <i>in vitro</i> release, interaction study (by FTIR), and stability. Further, <i>ex vivo</i> permeation and ciliotoxicity performed in sheep nasal mucosa, and <i>in vivo</i> biodistribution/pharmacokinetic was performed in rats for schizophernia. Developed NLCs showed spherical and clearly 3-dimentinal structure with 129 ± 2.7 nm mean diameter, 0.304 ± 0.003 PDI, -7.61 ± 0.56 mV zeta-potential, 58.16 ± 0.17% entrapment efficiency, 65.8 ± 2% drug loading and 74.32 ± 0.003% release in 12 h, followed by Higuchi model. <i>Ex vivo</i> study showed NLCs have three times higher permeation, compare to pure drug (around 71.50.32% in 6 h) and 3.98 g/cm<sup>2</sup>/h steady sate flux. The blood/brain ratio given by intranasally have higher compare to IV route, and 94.53 ± 21.45% drug targeting efficiency in brain. In conclusion, NLCs have easily crossed BBB, higher drug delivery and effective for schizophrenia in given by intranasal.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"832-843"},"PeriodicalIF":3.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comparative analysis of PLA and PCL microparticles for hydrophilic and hydrophobic drugs. 聚乳酸(PLA)和聚苯乙烯(PCL)微颗粒用于亲水性和疏水性药物的比较分析。
IF 3 4区 医学
Journal of microencapsulation Pub Date : 2024-12-01 Epub Date: 2024-11-05 DOI: 10.1080/02652048.2024.2423631
Subrat Kumar Panigrahi, Sougat Das, Saptarshi Majumdar
{"title":"A comparative analysis of PLA and PCL microparticles for hydrophilic and hydrophobic drugs.","authors":"Subrat Kumar Panigrahi, Sougat Das, Saptarshi Majumdar","doi":"10.1080/02652048.2024.2423631","DOIUrl":"10.1080/02652048.2024.2423631","url":null,"abstract":"<p><p>This study aims to investigate Polylactic Acid (PLA) and Polycaprolactone (PCL) polymers for microencapsulation of hydrophilic and hydrophobic anti-glaucoma drugs using an emulsion-based solvent evaporation technique. Microparticle size was analysed using optical microscopy, while drug-polymer interactions through Dynamic-Light-Scattering (DLS) and Fourier-Transform-Infra-red/Attenuated-Total-Reflection spectroscopy (FTIR/ATR). <i>In vitro</i>, drug release studies were performed to investigate drug encapsulation and release profiles. Spherical microparticles, with particle size 94 ± 6.9 μm for PCL-based and 100 ± 3.74 μm for PLA-based formulation, were obtained. Drug release studies showed 100% release over about 32 days, with encapsulation efficiency (%EE) and drug loading (%w/w) reaching up to 95 and 2.84% for PLA-based and 97 and 2.91% for PCL-based microparticles, respectively. DLS studies reveal an increase in hydrodynamic radius (<i>R<sub>H</sub></i>), which correlates to enhanced drug encapsulation. So, the nature of the drug and polymer significantly impacts drug encapsulation and release, with drug-polymer interactions playing a crucial role alongside experimental parameters.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"804-817"},"PeriodicalIF":3.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of poly(ε-caprolactone) microspheres on population pharmacokinetic/pharmacodynamic model of a simple coumarin. 聚(ε-己内酯)微球对一种简单香豆素的群体药代动力学/药效学模型的影响
IF 3 4区 医学
Journal of microencapsulation Pub Date : 2024-12-01 Epub Date: 2024-10-26 DOI: 10.1080/02652048.2024.2418606
Paola A Cárdenas, Izabel Almeida Alves, Bibiana Verlindo De Araujo, Diana Marcela Aragón
{"title":"Effect of poly(ε-caprolactone) microspheres on population pharmacokinetic/pharmacodynamic model of a simple coumarin.","authors":"Paola A Cárdenas, Izabel Almeida Alves, Bibiana Verlindo De Araujo, Diana Marcela Aragón","doi":"10.1080/02652048.2024.2418606","DOIUrl":"10.1080/02652048.2024.2418606","url":null,"abstract":"<p><p>This study aims to evaluated the impact of poly(ε-caprolactone) (PCL) microspheres on the pharmacokinetics and pharmacodynamics (PopPK/PD) of 6-methylcoumarin (6MC). For this, PCL microspheres loaded with 6MC were prepared using the emulsification-evaporation method. Particle size, zeta potential, drug loading, and entrapment efficiency were characterised by dynamic light scattering and UV spectrophotometry. In vitro release and pharmacokinetics in Wistar rats were assessed for free and encapsulated 6MC. Anti-inflammatory activity was evaluated using the carrageenan-induced paw edoema model, with PopPK and PopPK/PD models developed. Microspheres showed diameters between 2.9 and 7.1 µm, zeta potentials of -10 to -15 mV, and drug loading of 0.24 mg/mg. Encapsulation efficiency was 45.5% to 75.9%. PopPK models showed enhanced absorption and distribution, with increased anti-inflammatory potency of encapsulated 6MC. PCL microspheres significantly improved the pharmacokinetic and pharmacodynamic profiles of 6MC, enhancing its therapeutic potential for lipophilic drugs.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"739-753"},"PeriodicalIF":3.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physicochemical stability and controlled release of vitamin D3-loaded emulsions stabilised by whey protein isolate-basil seed gum conjugates. 用乳清蛋白分离物-巴西杉籽胶共轭物稳定的维生素 D3 负载乳剂的理化稳定性和控释。
IF 3 4区 医学
Journal of microencapsulation Pub Date : 2024-12-01 Epub Date: 2024-11-20 DOI: 10.1080/02652048.2024.2418615
Farzaneh Kouravand, Fakhri Shahidi, Milad Fathi, Arash Koocheki, Sahar Roshanak
{"title":"Physicochemical stability and controlled release of vitamin D<sub>3</sub>-loaded emulsions stabilised by whey protein isolate-basil seed gum conjugates.","authors":"Farzaneh Kouravand, Fakhri Shahidi, Milad Fathi, Arash Koocheki, Sahar Roshanak","doi":"10.1080/02652048.2024.2418615","DOIUrl":"10.1080/02652048.2024.2418615","url":null,"abstract":"<p><strong>Aim: </strong>The present study was conducted to produce a new carrier containing whey protein isolate-basil seed gum (WPI-BSG) conjugate to achieve superior physicochemical stability of emulsions containing vitamin D<sub>3</sub> (Vit-D<sub>3</sub>).</p><p><strong>Methods: </strong>Zeta-potential and particle size analysis, spectrophotometric method, encapsulation efficiency, loading capacity and dialysis bag method were used to examined physicochemical stability and Vit-D<sub>3</sub> release from the emulsions.</p><p><strong>Results: </strong>The conjugate-stabilised emulsion showed maximum encapsulation efficiency (87.05 ± 3.37% (w/w)) and loading capacity (5.43 ± 0.08% (w/w)) at the Vit-D3 concentration of 200 and 300 mg/kg. This emulsion also demonstrated good physical stability after 30 days of storage with the zeta potential and mean droplet size of -79.60 ± 0.62 mV and 1346.82 ± 5.95 nm, respectively. Additionally, the conjugate-stabilised emulsion had a maximum Vit-D<sub>3</sub> retention (chemical stability) of 72.79 ± 3.58% after a 15-day storage period.</p><p><strong>Conclusion: </strong>Our findings suggest that the conjugate-stabilised emulsion has a good stabilising capacity as a carrier for hydrophobic compounds such as Vit-D<sub>3</sub>.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"770-781"},"PeriodicalIF":3.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dermal drug delivery via bilosomes: a synergistic integration for better therapeutic outcomes. 通过双糖体进行皮肤给药:协同整合,提高疗效。
IF 3 4区 医学
Journal of microencapsulation Pub Date : 2024-12-01 Epub Date: 2024-11-07 DOI: 10.1080/02652048.2024.2423618
Kartik Aralelimath, Jagannath Sahoo, Sarika Wairkar
{"title":"Dermal drug delivery <i>via</i> bilosomes: a synergistic integration for better therapeutic outcomes.","authors":"Kartik Aralelimath, Jagannath Sahoo, Sarika Wairkar","doi":"10.1080/02652048.2024.2423618","DOIUrl":"10.1080/02652048.2024.2423618","url":null,"abstract":"<p><p>The dermal route is commonly used to deliver the drugs at the targeted site and achieve maximum therapeutic efficacy. The stratum corneum, the uppermost layer of the skin, presents a significant diffusional barrier for most drugs. Various nanoformulations face challenges such as limited drug absorption and inadequate retention at the targeted site, frequently hindering therapeutic efficacy. Researchers are increasingly exploring innovative strategies that leverage nanotechnology and specialized carriers to address these challenges and enhance the outcomes of dermal medications. A novel drug delivery system, bilosomes, has been designed as a potential vesicular carrier system for the dermal route. Bilosomes are colloidal, lipid-based vesicles stabilized with bile salts, offering greater stability during storage and transportation. The lipid bilayer of bilosomes imparts ultra-flexibility, facilitating penetration through the stratum corneum. This review explores the use of bilosomes in dermal formulations for treating diverse diseases, their developmental techniques, and characterization, and it sheds light on their advantages over traditional lipid nanocarriers.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"818-831"},"PeriodicalIF":3.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142591086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信