喷雾干燥胶束干粉吸入姜黄素在非小细胞肺癌治疗中的肺靶向递送。

IF 3 4区 医学 Q2 CHEMISTRY, APPLIED
Shraddha S Ghodke, K M G Taylor, Satyanarayana Somavarapu
{"title":"喷雾干燥胶束干粉吸入姜黄素在非小细胞肺癌治疗中的肺靶向递送。","authors":"Shraddha S Ghodke, K M G Taylor, Satyanarayana Somavarapu","doi":"10.1080/02652048.2025.2495246","DOIUrl":null,"url":null,"abstract":"<p><p>A spray-dried DPI formulation was developed to enhance solubility, stability, and pulmonary delivery of curcumin-loaded CS-HA dual-coated micelles for lung cancer therapy. Curcumin was encapsulated in Pluronic F68 micelles via thin-film hydration and coated with CS-HA to improve colloidal stability and cellular interaction. The micellar suspension was spray-dried using lactose and L-leucine as dispersibility enhancers. Formulation characterisation was conducted using DLS to determine mean diameter and PDI, zeta potential analysis, and HPLC for drug loading and encapsulation efficiency, along with TEM. Spray-dried formulations were further characterised by SEM, laser diffraction (Sympatec), FTIR, and XRPD. <i>In vitro</i> aerosol characterisation was performed using NGI. The micelles exhibited a mean diameter of 209 nm, PDI of 0.21, zeta potential of -14 mV, encapsulation efficiency of 50-90%, and loading capacity of 5.6% (w/w). XRPD and FTIR confirmed amorphous conversion and stability. The optimized DPI showed favourable aerodynamic properties for targeted pulmonary delivery in NSCLC.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"1-13"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spray-dried micellar dry powder inhalation of curcumin for lung-targeted delivery in non-small cell lung cancer therapy.\",\"authors\":\"Shraddha S Ghodke, K M G Taylor, Satyanarayana Somavarapu\",\"doi\":\"10.1080/02652048.2025.2495246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A spray-dried DPI formulation was developed to enhance solubility, stability, and pulmonary delivery of curcumin-loaded CS-HA dual-coated micelles for lung cancer therapy. Curcumin was encapsulated in Pluronic F68 micelles via thin-film hydration and coated with CS-HA to improve colloidal stability and cellular interaction. The micellar suspension was spray-dried using lactose and L-leucine as dispersibility enhancers. Formulation characterisation was conducted using DLS to determine mean diameter and PDI, zeta potential analysis, and HPLC for drug loading and encapsulation efficiency, along with TEM. Spray-dried formulations were further characterised by SEM, laser diffraction (Sympatec), FTIR, and XRPD. <i>In vitro</i> aerosol characterisation was performed using NGI. The micelles exhibited a mean diameter of 209 nm, PDI of 0.21, zeta potential of -14 mV, encapsulation efficiency of 50-90%, and loading capacity of 5.6% (w/w). XRPD and FTIR confirmed amorphous conversion and stability. The optimized DPI showed favourable aerodynamic properties for targeted pulmonary delivery in NSCLC.</p>\",\"PeriodicalId\":16391,\"journal\":{\"name\":\"Journal of microencapsulation\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microencapsulation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/02652048.2025.2495246\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2025.2495246","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

开发了一种喷雾干燥DPI配方,以提高姜黄素负载CS-HA双包被胶束的溶解度,稳定性和肺输送,用于肺癌治疗。将姜黄素通过薄膜水化包被Pluronic F68胶束,并包被CS-HA,以提高胶体稳定性和细胞相互作用。采用乳糖和l -亮氨酸作为分散剂对胶束悬浮液进行喷雾干燥。采用DLS法测定平均直径和PDI, zeta电位分析,HPLC法测定载药量和包封效率,TEM进行表征。喷雾干燥的配方进一步通过SEM,激光衍射(Sympatec), FTIR和XRPD进行表征。用NGI进行了体外气溶胶表征。胶束的平均直径为209 nm, PDI为0.21,zeta电位为-14 mV,包封效率为50-90%,负载容量为5.6% (w/w)。XRPD和FTIR证实了非晶转换和稳定性。优化后的DPI具有良好的空气动力学特性,可用于非小细胞肺癌的靶向肺输送。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spray-dried micellar dry powder inhalation of curcumin for lung-targeted delivery in non-small cell lung cancer therapy.

A spray-dried DPI formulation was developed to enhance solubility, stability, and pulmonary delivery of curcumin-loaded CS-HA dual-coated micelles for lung cancer therapy. Curcumin was encapsulated in Pluronic F68 micelles via thin-film hydration and coated with CS-HA to improve colloidal stability and cellular interaction. The micellar suspension was spray-dried using lactose and L-leucine as dispersibility enhancers. Formulation characterisation was conducted using DLS to determine mean diameter and PDI, zeta potential analysis, and HPLC for drug loading and encapsulation efficiency, along with TEM. Spray-dried formulations were further characterised by SEM, laser diffraction (Sympatec), FTIR, and XRPD. In vitro aerosol characterisation was performed using NGI. The micelles exhibited a mean diameter of 209 nm, PDI of 0.21, zeta potential of -14 mV, encapsulation efficiency of 50-90%, and loading capacity of 5.6% (w/w). XRPD and FTIR confirmed amorphous conversion and stability. The optimized DPI showed favourable aerodynamic properties for targeted pulmonary delivery in NSCLC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of microencapsulation
Journal of microencapsulation 工程技术-工程:化工
CiteScore
6.30
自引率
2.60%
发文量
39
审稿时长
3 months
期刊介绍: The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation. The journal covers: Chemistry of encapsulation materials Physics of release through the capsule wall and/or desorption from carrier Techniques of preparation, content and storage Many uses to which microcapsules are put.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信