Journal of microencapsulation最新文献

筛选
英文 中文
Development and evaluation of Hedyotis corymbosa (L.) extract containing phytosomes: a preclinical approach for treatment of neuropathic pain in rodent model. 含叶磷脂体的蛇舌草提取物的开发和评价:用于治疗啮齿动物神经性疼痛模型的临床前方法。
IF 3.9 4区 医学
Journal of microencapsulation Pub Date : 2023-05-01 DOI: 10.1080/02652048.2023.2188938
Nitin Kumar, Radha Goel, Monika Singh, Neeraj Kant Sharma, Praveen Kumar Gaur, Pradeep Kumar Sharma
{"title":"Development and evaluation of <i>Hedyotis corymbosa</i> (L.) extract containing phytosomes: a preclinical approach for treatment of neuropathic pain in rodent model.","authors":"Nitin Kumar,&nbsp;Radha Goel,&nbsp;Monika Singh,&nbsp;Neeraj Kant Sharma,&nbsp;Praveen Kumar Gaur,&nbsp;Pradeep Kumar Sharma","doi":"10.1080/02652048.2023.2188938","DOIUrl":"https://doi.org/10.1080/02652048.2023.2188938","url":null,"abstract":"<p><strong>Purpose: </strong>The study was aimed to encapsulate <i>Hedyotis corymbosa</i> extract (HCE) into phytosomes to improve its therapeutic efficacy in neuropathic pain by enhancing the bioavailability of chief chemical constituent Hedycoryside -A (HCA).</p><p><strong>Methods: </strong>For preparing phytosomes complexes (F1, F2, and F3), HCE and phospholipids were reacted in disparate ratio. F2 was chosen to assess its therapeutic efficacy in neuropathic pain induced by partial sciatic nerve ligation. Nociceptive threshold and oral bioavailability were also estimated for F2.</p><p><strong>Results: </strong>Particle size, zeta potential and entrapment efficiency for F2 were analysed as 298.1 ± 1.1 nm, -3.92 ± 0.41 mV and 72.12 ± 0.72% respectively. F2 gave enhanced relative bioavailability (158.92%) of HCA along with a greater neuroprotective potential showing a significant antioxidant effect and augmentation (p < 0.05) in nociceptive threshold with the diminution in damage to nerves.</p><p><strong>Conclusion: </strong>F2 is an optimistic formulation for enhancing the HCE delivery for the effective treatment of neuropathic pain.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":"40 3","pages":"186-196"},"PeriodicalIF":3.9,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9256119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impregnation of polyethylene terephthalate (PET) grafts with BMP-2 loaded functional nanoparticles for reconstruction of anterior cruciate ligament. 载BMP-2功能纳米颗粒浸渍聚对苯二甲酸乙二醇酯(PET)移植物重建前交叉韧带。
IF 3.9 4区 医学
Journal of microencapsulation Pub Date : 2023-05-01 DOI: 10.1080/02652048.2023.2188940
Zeynep Karahaliloglu, Batur Ercan, Baki Hazer
{"title":"Impregnation of polyethylene terephthalate (PET) grafts with BMP-2 loaded functional nanoparticles for reconstruction of anterior cruciate ligament.","authors":"Zeynep Karahaliloglu,&nbsp;Batur Ercan,&nbsp;Baki Hazer","doi":"10.1080/02652048.2023.2188940","DOIUrl":"https://doi.org/10.1080/02652048.2023.2188940","url":null,"abstract":"<p><p>Current artificial ligaments based on polyethylene terephthalate (PET) are associated with some disadvantages due to their hydrophobicity and low biocompatibility. In this study, we aimed to modify the surface of PET using polyethylene glycol (PEG)-terminated polystyrene (PS)-linoleic nanoparticles (PLinaS-g-PEG-NPs). We accomplished that BMP-2 in two different concentrations encapsulated in nanoparticles with an efficiency of 99.71 ± 1.5 and 99.95 ± 2.8%. While the dynamic contact angle of plain PET surface reduced from 116° to 115° after a measurement periods of 10 s, that of PLinaS-g-PEG-NPs modified PET from 80° to 17.5° within 0.35 s. According to <i>in vitro</i> BMP2 release study, BMP-2 was released 13.12 ± 1.76% and 45.47 ± 1.78% from 0.05 and 0.1BMP2-PLinaS-g-PEG-NPs modified PET at the end of 20 days, respectively. Findings from this study revealed that BMP2-PLinaS-g-PEG-NPs has a great potential to improve the artificial PET ligaments, and could be effectively applied for ACL reconstruction.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":"40 3","pages":"197-215"},"PeriodicalIF":3.9,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9262988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Core-shell micro/nanocapsules: from encapsulation to applications. 核壳微/纳米胶囊:从封装到应用。
IF 3.9 4区 医学
Journal of microencapsulation Pub Date : 2023-05-01 DOI: 10.1080/02652048.2023.2178538
Eslam Elkalla, Sumera Khizar, Mohamad Tarhini, Noureddine Lebaz, Nadia Zine, Nicole Jaffrezic-Renault, Abdelhamid Errachid, Abdelhamid Elaissari
{"title":"Core-shell micro/nanocapsules: from encapsulation to applications.","authors":"Eslam Elkalla,&nbsp;Sumera Khizar,&nbsp;Mohamad Tarhini,&nbsp;Noureddine Lebaz,&nbsp;Nadia Zine,&nbsp;Nicole Jaffrezic-Renault,&nbsp;Abdelhamid Errachid,&nbsp;Abdelhamid Elaissari","doi":"10.1080/02652048.2023.2178538","DOIUrl":"https://doi.org/10.1080/02652048.2023.2178538","url":null,"abstract":"<p><p>Encapsulation is the way to wrap or coat one substance as a core inside another tiny substance known as a shell at micro and nano scale for protecting the active ingredients from the exterior environment. A lot of active substances, such as flavours, enzymes, drugs, pesticides, vitamins, in addition to catalysts being effectively encapsulated within capsules consisting of different natural as well as synthetic polymers comprising poly(methacrylate), poly(ethylene glycol), cellulose, poly(lactide), poly(styrene), gelatine, poly(lactide-co-glycolide)s, and acacia. The developed capsules release the enclosed substance conveniently and in time through numerous mechanisms, reliant on the ultimate use of final products. Such technology is important for several fields counting food, pharmaceutical, cosmetics, agriculture, and textile industries. The present review focuses on the most important and high-efficiency methods for manufacturing micro/nanocapsules and their several applications in our life.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":"40 3","pages":"125-156"},"PeriodicalIF":3.9,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9262466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Construction and evaluation of an antioxidant synergistic system containing vitamin C and vitamin E. 含维生素C和维生素E的抗氧化协同体系的构建与评价。
IF 3.9 4区 医学
Journal of microencapsulation Pub Date : 2023-05-01 DOI: 10.1080/02652048.2023.2183276
Ran Tao, Qianyu Zhang, Jialing Duan, Ran Chen, Liyun Yao, Ruiteng Zhang, Gang Dong, Huali Chen
{"title":"Construction and evaluation of an antioxidant synergistic system containing vitamin C and vitamin E.","authors":"Ran Tao,&nbsp;Qianyu Zhang,&nbsp;Jialing Duan,&nbsp;Ran Chen,&nbsp;Liyun Yao,&nbsp;Ruiteng Zhang,&nbsp;Gang Dong,&nbsp;Huali Chen","doi":"10.1080/02652048.2023.2183276","DOIUrl":"https://doi.org/10.1080/02652048.2023.2183276","url":null,"abstract":"<p><strong>Aims: </strong>The aim of this study is to develop a liposome that could exert unparalleled antioxidant effects. In the present study, a vitamin C (VC)/vitamin E (VE)-co-loaded multivesicular liposome (VCVE-MVL) was constructed.</p><p><strong>Methods: </strong>Vitamins were encapsulated in soybean phosphatidylcholine (SPC) and cholesterol (CHO) by multi-emulsification method. The concentration of VC was determined by Fast Blue method. The concentration of VE was determined by high performance liquid chromatography (HPLC). Vitamin antioxidant capacity in vitro and in vivo was determined using β-carotene bleaching.</p><p><strong>Results: </strong>VCVE-MVL with particle diameter of 848.55 ± 0.29 nm and SPAN of 0.16 ± 0.11 were obtained. The encapsulation efficiency of VC reached 48.51% (w/w)±0.15. Compared with VC/VE solution, VCVE-MVL had a higher permeation efficiency. In addition, the in vitro and ex-vivo antioxidant tests verified the adequate antioxidant activity of VCVE-MVL.</p><p><strong>Conclusions: </strong>In conclusion, the antioxidant synergistic system we constructed and demonstrated its potential applications in the cosmetics industry.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":"40 3","pages":"157-170"},"PeriodicalIF":3.9,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9263115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of formulation design and lyophilisation on the physicochemical characteristics of finasteride nanosystems. 配方设计和冻干对非那雄胺纳米系统理化特性的影响。
IF 3.9 4区 医学
Journal of microencapsulation Pub Date : 2023-03-01 DOI: 10.1080/02652048.2023.2178537
Malik Muhammad Irfan, Shefaat Ullah Shah, Kifayat Ullah Shah, Nicolas Anton, Idoux-Gillet Ysia, Guillaume Conzatti, Kifayat Ullah Shah, Perennes Elise, Thierry Vandamme
{"title":"Impact of formulation design and lyophilisation on the physicochemical characteristics of finasteride nanosystems.","authors":"Malik Muhammad Irfan,&nbsp;Shefaat Ullah Shah,&nbsp;Kifayat Ullah Shah,&nbsp;Nicolas Anton,&nbsp;Idoux-Gillet Ysia,&nbsp;Guillaume Conzatti,&nbsp;Kifayat Ullah Shah,&nbsp;Perennes Elise,&nbsp;Thierry Vandamme","doi":"10.1080/02652048.2023.2178537","DOIUrl":"https://doi.org/10.1080/02652048.2023.2178537","url":null,"abstract":"<p><p>The fundamental purpose of this study was to develop a stable lyophilised finasteride nanosystem (FNS-NS) for topical delivery. The FNS-NS was fabricated using an ultrasonication technique. The impact of two different cryoprotectants on the physicochemical characteristics of FNS-NS before and after lyophilisation was thoroughly investigated. The lyophilised FNS-NS had spherical shape with particle size lied between 188.6 nm ± 4.4 and 298.7 nm ± 4.7, low PDI values (0.26 ± 0.02 to 0.32 ± 0.02) and zeta potential ranging from -38.3 to +53.3 mV. The confocal laser microscopy depicted a comparatively higher cellular internalisation achieved for undecorated FNS-NS with respect to its chitosan-decorated counterpart. The lyophilised FNS-NS was stable for 90 days at proper storage conditions. The FNS-NS with 15% trehalose had appropriate physicochemical attributes that could be a promising carrier for topical delivery to treat androgenic alopecia.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":"40 2","pages":"106-123"},"PeriodicalIF":3.9,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9174638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design, development and characterisation of an optimised scaffold to enhance cell proliferation for tissue repair. 优化支架的设计,开发和特性,以促进组织修复的细胞增殖。
IF 3.9 4区 医学
Journal of microencapsulation Pub Date : 2023-03-01 DOI: 10.1080/02652048.2023.2175922
Subodh Kumar, Chanakya Lahiri, Somya Chaaudhary, Prateek Paul, Yogesh Kumar Verma
{"title":"Design, development and characterisation of an optimised scaffold to enhance cell proliferation for tissue repair.","authors":"Subodh Kumar,&nbsp;Chanakya Lahiri,&nbsp;Somya Chaaudhary,&nbsp;Prateek Paul,&nbsp;Yogesh Kumar Verma","doi":"10.1080/02652048.2023.2175922","DOIUrl":"https://doi.org/10.1080/02652048.2023.2175922","url":null,"abstract":"<p><p>Scaffolds are implanted to spur the regeneration of damaged tissues. The inappropriate construction of scaffolds laden with cells is not efficient. The optimisation of the scaffolds' constituents is essential for tissue repair. In this study, a scaffold embedded with Raloxifene drug was optimised via Response Surface Methodology (RSM), targeting controlled cell proliferation. The independent variables for RSM (fibronectin, collagen I, glutaraldehyde, and Raloxifene) were screened in Swiss target prediction software (probability ≥99%) to optimise dependent variables (porosity, cell viability, degradation, and swelling) by ANOVA and characterised with FTIR, SEM and contact angle measurement. The scaffold was tested for antimicrobial property, and proliferation and attachment of mouse mesenchymal stem cells. The ANOVA analysis with <i>p</i> value ≤ 0.0001 suggested the optimal concentration of biomaterials and drugs. The optimised scaffold displayed 80% porosity with pore size 33 ± 3 µm. We also observed significant cell attachment and proliferation (<i>p</i> value ≤ 0.05) in optimised scaffold. The scaffold may be further evaluated for its potential for tissue repair.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":"40 2","pages":"82-97"},"PeriodicalIF":3.9,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9181407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microencapsulation of n-tetradecane with poly (methyl methacrylate-co-methacrylic acid) shell by seeded emulsion polymerisation and its thermal energy storage characteristics. 种子乳液聚合法制备正十四烷与聚甲基丙烯酸甲酯-共甲基丙烯酸壳的微胶囊化及其储热特性
IF 3.9 4区 医学
Journal of microencapsulation Pub Date : 2023-03-01 DOI: 10.1080/02652048.2023.2175923
U R Mahajan, I Emmanuel, A Shrinivasa Rao, S T Mhaske
{"title":"Microencapsulation of n-tetradecane with poly (methyl methacrylate-co-methacrylic acid) shell by seeded emulsion polymerisation and its thermal energy storage characteristics.","authors":"U R Mahajan,&nbsp;I Emmanuel,&nbsp;A Shrinivasa Rao,&nbsp;S T Mhaske","doi":"10.1080/02652048.2023.2175923","DOIUrl":"https://doi.org/10.1080/02652048.2023.2175923","url":null,"abstract":"<p><p>This study aims to enhance the latent heat storage properties of the microcapsules by altering the amount of crosslinking agent from 3 to 20%<i>w/w</i>, the core-to-shell ratio from 1:1 to 2:1, and the amount of initiator from 1 to 3%. The phase change material n-tetradecane (C-14) was microencapsulated by using poly (methyl methacrylate -co- methacrylic acid) as a shell material through an oil by water-seeded emulsion polymerisation technique. The structural, morphological, and thermal properties of microcapsules were evaluated by using Fourier transform infrared spectroscopy, optical microscopy, scanning electron microscopy, differential scanning calorimetry analysis, and thermogravimetric analysis. The average particle size of the microcapsules ranges from 01 to 15 µm. The results showed that the microcapsules have a higher melting enthalpy value of 127.3 ± 0.06 J/g with a microencapsulation efficiency of 66.72% when a 20% <i>w/w</i> crosslinker was used. The thermal stability of the phase change material (PCM) was increased by ∼30 ± 2 °C by encapsulation.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":"40 2","pages":"98-105"},"PeriodicalIF":3.9,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9166961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Poly(lactic acid)/β-cyclodextrin based nanoparticles bearing ruthenium(II)-arene naproxen complex: preparation and characterisation. Analytical validation for metal determination by microwave-induced plasma optical emission spectrometry. 含钌(II)-芳烃萘普生配合物的聚乳酸/β-环糊精纳米颗粒:制备和表征。微波诱导等离子体发射光谱法测定金属的分析验证。
IF 3.9 4区 医学
Journal of microencapsulation Pub Date : 2023-03-01 DOI: 10.1080/02652048.2023.2172469
Ruan Reis Nascimento, Julie Pauline Gaitan Tabares, Paulo Neilson Marques Dos Anjos, Luana Novaes Santos, Denise de Oliveira Silva, Rodrigo Luis Silva Ribeiro Santos
{"title":"Poly(lactic acid)/β-cyclodextrin based nanoparticles bearing ruthenium(II)-arene naproxen complex: preparation and characterisation. Analytical validation for metal determination by microwave-induced plasma optical emission spectrometry.","authors":"Ruan Reis Nascimento,&nbsp;Julie Pauline Gaitan Tabares,&nbsp;Paulo Neilson Marques Dos Anjos,&nbsp;Luana Novaes Santos,&nbsp;Denise de Oliveira Silva,&nbsp;Rodrigo Luis Silva Ribeiro Santos","doi":"10.1080/02652048.2023.2172469","DOIUrl":"https://doi.org/10.1080/02652048.2023.2172469","url":null,"abstract":"<p><p>The objectives of this work are to develop nanocarrier systems for the Ru(II)-p-cymene naproxen antitumor metallodrug, [Ru(η<sup>6</sup>-p-cymene)(npx)Cl] or Rupcy, based on polymeric nanoparticles (NPs) composed by the biodegradable poly(lactic acid) (PLA) and the hydrophilic polymerised β-cyclodextrin (PolyCD); to validate an analytical method for determination of Ru incorporated into the metallodrug loaded-NPs. The PolyCD was prepared by single step condensation and polymerisation reaction and incorporated as a polymer blend during the fabrication of PLA/PolyCD blends NPs and also as a core/shell structure built by adsorption of the PolyCD onto the surface of PLA NPs to give PLA(core)/PolyCD(shell) NPs. Three different loaded-systems incorporating the metallodrug (Rupcy-PLA NPs (<b>1</b>), Rupcy-PLA/PolyCD blends (<b>2</b>), and Rupcy-PLA(core)/PolyCD(shell) NPs (<b>3</b>)) were prepared by nanoprecipitation. The characterisation was performed by Proton Nuclear Magnetic Resonance, Matrix Assisted Laser Desorption/Ionization Time-of-Flight, Fourier-Transform Infra-red and UV-VIS Electronic Absorption Spectroscopies, Thermogravimetric Analysis, Differential Scanning Calorimetry, Dynamic Light Scattering, and Electrophoretic Light Scattering. Ru was determined by Microwave Induced Plasma Optical Emission Spectrometry (MIP-OES) with validation of the method. The metallodrug entrapment efficiency was around 90% (w/w) and drug loading was at 3-4% (w/w). The characterised metallodrug-loaded systems exhibited monomodal size distributions and appropriate hydrodynamic diameters [218.3 ± 13.5 (<b>1</b>), 205.4 ± 14.4 (<b>2</b>), 231.5 ± 22.0 (<b>3</b>) nm] and zeta potential values [-31.5 ± 2.2 (<b>1</b>), -26.1 ± 4.5 (<b>2</b>), -28.8 ± 6.1 (<b>3</b>) mV]. The validation of the MIP-OES method by evaluating selectivity, linearity, precision, accuracy, and limits of detection and quantification succeeded. The NPs parameters are compatible with colloidally stable systems. The MIP-OES method showed to be simple, reliable, and feasible to quantify indirectly the amount of the metallodrug-loaded into the PLA NPs.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":"40 2","pages":"67-81"},"PeriodicalIF":3.9,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9181414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Preparation and characterisation of self-emulsifying drug delivery system (SEDDS) for enhancing oral bioavailability of metformin hydrochloride using hydrophobic ion pairing complexation. 疏水离子对络合提高盐酸二甲双胍口服生物利用度的自乳化给药系统(SEDDS)的制备与表征。
IF 3.9 4区 医学
Journal of microencapsulation Pub Date : 2023-01-01 DOI: 10.1080/02652048.2023.2170488
Seyedeh Nika Rezvanjou, Mohammad Reza Niavand, Omid Heydari Shayesteh, Ehsan Mehrani Yeganeh, Davood Ahmadi Moghadam, Katayoun Derakhshandeh, Reza Mahjub
{"title":"Preparation and characterisation of self-emulsifying drug delivery system (SEDDS) for enhancing oral bioavailability of metformin hydrochloride using hydrophobic ion pairing complexation.","authors":"Seyedeh Nika Rezvanjou,&nbsp;Mohammad Reza Niavand,&nbsp;Omid Heydari Shayesteh,&nbsp;Ehsan Mehrani Yeganeh,&nbsp;Davood Ahmadi Moghadam,&nbsp;Katayoun Derakhshandeh,&nbsp;Reza Mahjub","doi":"10.1080/02652048.2023.2170488","DOIUrl":"https://doi.org/10.1080/02652048.2023.2170488","url":null,"abstract":"<p><strong>Aim: </strong>The aim of this study was preparation of a self-emulsifying drug delivery system (SEEDS) containing metformin hydrochloride.</p><p><strong>Methods: </strong>Hydrophobic ion paired complexes were prepared by electrostatic interaction between metformin and sodium lauryl sulphate (SLS). The nanodroplets were optimised using two-level full factorial methodology and their morphology were examined. <i>In vitro</i> release of metformin from SEDDS was evaluated in simulated gastric and intestinal fluids. Finally, the ex<i>-vivo</i> efficacy of the optimised formulation in enhancing the intestinal permeability of metformin was evaluated using non-everted intestinal sac.</p><p><strong>Results: </strong>The data revealed that in weight ratio 1:4(metformin: SLS), the highest recovery was achieved. The physico-chemical properties of the optimised nano-droplets including size, polydispersity index (PdI), zeta potential, and loading efficiency (%) were 192.33 ± 9.9 nm, 0.275 ± 0.051; -1.52 mV, and 93.75 ± 0.77% (w/w), respectively.</p><p><strong>Conclusions: </strong>The data obtained from the intestinal transport study demonstrated that SEDDS can significantly enhance the oral permeability of the compound.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":"40 1","pages":"53-66"},"PeriodicalIF":3.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10746231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polymer drug conjugates containing memantine, tacrine and cinnamic acid: promising nanotherapeutics for the treatment of Alzheimer's disease. 含有美金刚、他克林和肉桂酸的聚合物药物偶联物:治疗阿尔茨海默病的有前途的纳米疗法。
IF 3.9 4区 医学
Journal of microencapsulation Pub Date : 2023-01-01 DOI: 10.1080/02652048.2023.2167011
Tobeka Naki, William Morwa Reagile Matshe, Mohammed Olusegun Balogun, Suprakas Sinha Ray, Samuel Ayodele Egieyeh, Blessing Atim Aderibigbe
{"title":"Polymer drug conjugates containing memantine, tacrine and cinnamic acid: promising nanotherapeutics for the treatment of Alzheimer's disease.","authors":"Tobeka Naki,&nbsp;William Morwa Reagile Matshe,&nbsp;Mohammed Olusegun Balogun,&nbsp;Suprakas Sinha Ray,&nbsp;Samuel Ayodele Egieyeh,&nbsp;Blessing Atim Aderibigbe","doi":"10.1080/02652048.2023.2167011","DOIUrl":"https://doi.org/10.1080/02652048.2023.2167011","url":null,"abstract":"<p><strong>Aim: </strong>To prepare polymer-drug conjugates containing a combination of memantine, tacrine, and <i>E</i>)-<i>N</i>-(3-aminopropyl)cinnamide, promising therapeutics for the treatment of neurodegenerative disorders.</p><p><strong>Methods: </strong>The conjugates were characterised by <sup>1</sup>HNMR, particle size analysis, SEM, LC-MS, TEM/EDX, and XRD, followed by <i>in vitro</i> anti-acetylcholinesterase and drug release studies.</p><p><strong>Results: </strong><sup>1</sup>H NMR analysis revealed successful drug conjugation with drug mass percentages in the range of 1.3-6.0% w/w. The drug release from the conjugates was sustained for 10 h in the range of 20-36%. The conjugates' capability to inhibit acetylcholinesterase (AChE) activity was significant with IC<sub>50</sub> values in the range of 13-44.4 µm which was more effective than tacrine (IC<sub>50</sub> =1698.8 µm). The docking studies further confirmed that the conjugation of the drugs into the polymer improved their anti-acetylcholinesterase activity.</p><p><strong>Conclusion: </strong>The drug release profile, particle sizes, and <i>in vitro</i> studies revealed that the conjugates are promising therapeutics for treating neurodegenerative disorders.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":"40 1","pages":"15-28"},"PeriodicalIF":3.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10780347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信