{"title":"An update on nanoformulations with FDA approved drugs for female reproductive cancer.","authors":"Mahima Raj, Abha Meena, Richa Seth, Anurag Mathur, Suaib Luqman","doi":"10.1080/02652048.2025.2474457","DOIUrl":"10.1080/02652048.2025.2474457","url":null,"abstract":"<p><p>Female reproductive cancers, including ovarian, cervical, breast, gestational trophoblastic and endometrial cancer, present significant challenges in therapy and patient prognosis. Conventional chemotherapy often lacks selectivity, leading to systemic toxicity and reduced treatment efficacy. Nanotechnology has emerged as a promising approach to improve drug delivery and therapeutic outcomes. Encapsulation of FDA-approved drugs within nanocarriers such as liposomes, polymeric nanoparticles, and lipid nanoparticles enables controlled drug release, reduces off-target effects, and enhances drug accumulation at tumor sites. This targeted delivery minimizes damage to healthy tissues and improves patient survival rates. Additionally, nanoformulations facilitate combination therapy, overcoming drug resistance and maximizing therapeutic efficacy. Despite promising results, challenges like scalability, reproducibility, and regulatory approvals hinder widespread clinical applications. Developing personalized nanoformulations tailored to individual patient profiles offers potential for precision cancer therapy. This study explores the role of nanoformulations in enhancing the therapeutic potential of FDA-approved drugs for treating female reproductive cancers.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"266-299"},"PeriodicalIF":3.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143670191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preparation, characterisation, anticancer potential and safety evaluation of a soy lecithin phytosome delivery system loaded with constituents from <i>Barleria lupulina</i>.","authors":"Sabyasachi Banerjee, Shibangi Mukhopadhyay, Avik Das, Subhasis Banerjee, Sankhadip Bose, Santanu Banerjee, Nicolette Casarcia, Anupam Bishayee","doi":"10.1080/02652048.2025.2467046","DOIUrl":"10.1080/02652048.2025.2467046","url":null,"abstract":"<p><p>In this study, antineoplastic effects of a novel soy lecithin-based phytosome drug delivery system containing <i>Barleria lupulina</i> Lindl. extract (BLSP) was evaluated. BLSP was prepared using the thin-film hydration method and analysed using energy-dispersive X-ray spectroscopy, scanning electron microscopy, X-ray diffraction, and Zetasizer technique. Phytosomes showed a mean-diameter of 135 ± 0.29 nm, zeta potential of -56 ± 1.16 mV, and entrapment efficiency of 57.24 ± 0.12%. The drug release profiles exhibited a two-phase pattern with a protracted and sustained release after the first release. BLSP had a cytotoxic potential against MCF-7 breast and HeLa cervical cancers and demonstrated a concentration-dependent reduction of reactive oxygen species and mitochondrial membrane potential. BLSP caused upregulation of B-cell lymphoma-2-associated-X protein, caspase-8, caspase-9, and cluster of differentiation-95, and downregulation of B-cell lymphoma-2. The <i>in vivo</i> toxicity study showed the safety of BLSP. Overall, BLSP has demonstrated potential as a promising formulation for delivering <i>B. lupulina</i> phytoconstituents to treat breast and cervical cancer.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"209-229"},"PeriodicalIF":3.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143483170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nadhir N A Jafar, Junainah Abd Hamid, Farag M A Altalbawy, Pawan Sharma, Abhishek Kumar, Shirin Shomurotova, Rafid Jihad Albadr, Kamil K Atiyah Altameemi, Hawraa Mahdi Saleh, Fakhri Alajeeli, Ahmed Mohammed Ahmed, Irfan Ahmad, Imad Ibrahim Dawood
{"title":"Gadolinium (Gd)-based nanostructures as dual-armoured materials for microbial therapy and cancer theranostics.","authors":"Nadhir N A Jafar, Junainah Abd Hamid, Farag M A Altalbawy, Pawan Sharma, Abhishek Kumar, Shirin Shomurotova, Rafid Jihad Albadr, Kamil K Atiyah Altameemi, Hawraa Mahdi Saleh, Fakhri Alajeeli, Ahmed Mohammed Ahmed, Irfan Ahmad, Imad Ibrahim Dawood","doi":"10.1080/02652048.2025.2469259","DOIUrl":"10.1080/02652048.2025.2469259","url":null,"abstract":"<p><p>Gadolinium (Gd) nanoparticles hold significant promise in medical theranostics due to their unique properties. This review outlines the synthesis, characterisation, and applications of Gd nanostructures in combating microbial threats and advancing cancer theragnostic strategies. Synthesis methods such as co-precipitation, microemulsion, and laser ablation are discussed, alongside TEM, SEM, and magnetic characterisation. The antimicrobial efficacy of Gd nanostructures, their potential in combination therapy, and promising anticancer mechanisms are explored. Biocompatibility, toxicity, and regulatory considerations are also evaluated. Challenges, future perspectives, and emerging trends in Gd nanostructure research are highlighted, emphasising their transformative potential in medical applications.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"239-265"},"PeriodicalIF":3.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143482739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fabrication of nano-ceria encapsulated with oleic acid to attenuate gestational diabetes mellitus in streptozotocin-induced diabetic pregnant mice model.","authors":"Huili Yang, Yujun An, Juan Meng, Xiaomei Lv","doi":"10.1080/02652048.2024.2423629","DOIUrl":"10.1080/02652048.2024.2423629","url":null,"abstract":"<p><strong>Aim: </strong>The study aims to fabricate and evaluate Nano-ceria encapsulated oleic acid (CeO<sub>2</sub> NPs-OA) to treat gestational diabetes mellitus (GDM).</p><p><strong>Methods: </strong>The CeO<sub>2</sub> NPs was synthesised by thermal decomposition. TEM, XRD, and FTIR confirms particles. <i>In vitro</i> studies on STZ-induced NIH 3T3 assessed antioxidant, anticancer, antidiabetic, and anti-inflammatory properties. <i>In vivo</i> studies were performed on pregnant mice induced with STZ, examined antidiabetic activity, oxidative stress, and dyslipidemia.</p><p><strong>Results: </strong>The CeO<sub>2</sub> NPs-OA had a spherical structure and uniform distribution. A PDI of 0.5 with a zeta-potential of - 44 ± 2 mV. The DPPH and ABTS exhibit 40% and 39.21% antioxidant activity. The CeO<sub>2</sub> NPs-OA inhibits diabetes at 500 μg/mL. The <i>in vivo</i> studies confirmed the reduction in oxidative stress by reducing MDA <i>(p < 0.05)</i>. The histopathological analysis of the STZ-induced model shows capillary, which CeO<sub>2</sub> NPs-OA reduced.</p><p><strong>Conclusion: </strong>CeO<sub>2</sub> NPs-OA shows promise for treating GDM and improving maternal and foetal health.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"191-208"},"PeriodicalIF":3.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144063820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weina Liang, Yan Zhang, Jianpeng Li, Chenglin Ji, Xuexin Jiang
{"title":"Her-2 nanobody modified cisplatin nanoparticles for precise chemotherapy of colon cancer.","authors":"Weina Liang, Yan Zhang, Jianpeng Li, Chenglin Ji, Xuexin Jiang","doi":"10.1080/02652048.2025.2467060","DOIUrl":"10.1080/02652048.2025.2467060","url":null,"abstract":"<p><p>Construct a Her-2 nanobody modified nanoplatform as a versatile carrier of cisplatin and evaluate its anti-tumour effects. Size, morphology, cellular uptake, in vitro release, cell viability, bio-distribution and antitumor efficacy were respectively measured by dynamic light scattering, transmission electron microscopy, confocal microscopy, HPLC, MTT assay, ICP-Mass and tumour volume. Nb-CDDP NPs was prepared with average diameter 60.4 ± 8.4 nm, PDI 0.2 ± 0.02, Zeta potential -35.74 mV, entrapment efficiency 89.5%±0.8% and drug loading 28.7%±1.3% (w/w). From which cisplatin could release more rapidly in acidic solution. NPs could be easily phagocytised and exhibited stronger cytotoxic effect in HCT-116 cells with IC<sub>50</sub> 1.46 ± 0.019 μg/mL. The concentration of Nb-CDDP NPs in tumour and its inhibition ratio on tumour volume were both higher than without Nb modification, with hardly any influence on body weight. This cisplatin nanoplatform exhibits exceptional properties and high targeting anti-tumour efficacy in colon cancer cells and mice, which maybe provide a promising strategy for precise chemotherapy.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"230-238"},"PeriodicalIF":3.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synergistic combinatorial delivery system based on nanoliposome encapsulating doxorubicin and sorafenib for broad-spectrum cancer treatment.","authors":"Farwa Nurjis, Usama Sarwar, Joham Sarfraz Ali, Mahnoor Fayyaz, Faiza Munir, Shaheen Shahzad","doi":"10.1080/02652048.2025.2480597","DOIUrl":"10.1080/02652048.2025.2480597","url":null,"abstract":"<p><p>A novel combination delivery approach entrapping Sorafenib inside a nanoliposome bilayer and Doxorubicin within the aqueous core to achieve the broad-spectrum synergistic chemotherapeutic effect. DOX-SOR liposomes were synthesized by thin film hydration and characterized using UV-visible spectroscopy, Fourier Transform Infrared Spectroscopy, Dynamic Light Scattering, Fluorescence, and Scanning Electron Microscopy, followed by cytotoxicity assessments. Nanoliposomes demonstrated effective loading and encapsulation of Doxorubicin (10.23% ± 0.65 and 89.65% ± 0.52) and Sorafenib (10.42% ± 0.50 and 85.35% ± 0.72) with a 165 nm ± 1.34 mean diameter, -15.2 ± 1.78 zeta potential, and 75% ± 1.92 of cumulative release. <i>In vitro</i> analysis of nanoliposomes demonstrated biocompatibility up to 250 µg/mL concentration (<i>p</i> < 0.05), enhanced intracellular localization in Hep2c cell lines, 91% ± 1.72 cytotoxic effects (<i>p</i> < 0.0001) with IC<sub>50</sub> up to 127µg/mL, 21% ± 0.89 cell viability with 85% apoptosis (<i>p</i> < 0.0001) using flow cytometer. This study presents a promising treatment approach using a multidrug-loaded nanoliposomes for broad-spectrum synergistic chemotherapy.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"300-312"},"PeriodicalIF":3.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143700734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hanaa Ali Hussein, Fatin L Khaphi, Ramachandran Sivaramakrishnan, Sivamani Poornima, Mohd Azmuddin Abdullah
{"title":"Recent developments in sustained-release and targeted drug delivery applications of solid lipid nanoparticles.","authors":"Hanaa Ali Hussein, Fatin L Khaphi, Ramachandran Sivaramakrishnan, Sivamani Poornima, Mohd Azmuddin Abdullah","doi":"10.1080/02652048.2025.2495290","DOIUrl":"https://doi.org/10.1080/02652048.2025.2495290","url":null,"abstract":"<p><p>Solid Lipid Nanoparticles (SLNs) are versatile nano-carriers for wide range of applications. The advantages of SLNs include ease of preparation, low toxicity, high active compound bioavailability, flexibility of incorporating hydrophilic and lipophilic drugs, and feasibility of large-scale production. This review provides an overview on the preparation methods of the SLNs, the micro and nanostructure characteristics of the SLNs, and the different factors influencing sustained release and targeted drug delivery. The applications in agriculture and environment, cosmetics, wound healing, malarial treatment, gene therapy and nano-vaccines, and cancer therapy, are elaborated. The mechanisms such as passive, active, and co-delivery are discussed. The issues, challenges and the way forward with ionisable SLNs for delivery of gene and vaccines, RAS-targeted therapy, and bioactive compounds, are highlighted. In combination with multiple compounds and the potential for integration with nature/bio-based solutions, SLNs are proven to be effective, and practical for diverse applications.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"1-31"},"PeriodicalIF":3.0,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143997534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novel formulation of curcumin-loaded chlorhexidine drug combined with gold nanoparticles for effective therapeutic agent against urinary tract infections.","authors":"Jian Kang, Yanqing Tong","doi":"10.1080/02652048.2025.2457667","DOIUrl":"10.1080/02652048.2025.2457667","url":null,"abstract":"<p><strong>Aim: </strong>This study investigates a novel treatment for urinary tract infections (UTIs) caused by <i>Staphylococcus aureus</i>, <i>Escherichia coli</i>, and <i>Klebsiella pathogenic</i> bacterial strains.</p><p><strong>Methods: </strong>The Cur/Chx/Au composite matrix was synthesised in one pot by solution reduction and examined for functional groups and surface morphology by FT-IR, UV-DRS, HR-TEM, and TGA. <i>In vitro,</i> microbial growth inhibition evaluation and pathogen biofilm studies assessed the composite's antibacterial capacity.</p><p><strong>Results: </strong>Cur/Chx/Au exhibit mean diameter from 30 ± 5.2 nm, PDI 0.50 ± 0.05, and a zeta potential of -9.56 ± 1.84. The inhibition zones for <i>S. aureus</i> and <i>E. coli</i> were 16 ± 1.2 mm and 14 ± 0.8 mm, respectively, with an anti-inflammatory inhibition rate of 89.96%. The composite material's biocompatibility was further tested utilising <i>in-vitro</i> MTT, cell proliferation, and wound scratch assays in NHI 3T3 cells.</p><p><strong>Conclusion: </strong>Our findings demonstrate that the combination of Cur/Chx/Au composite matrix is a promising formulation for UTI treatment.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"177-190"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143408643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zainab Muhammad, Suleiman A Muhammad, Abdullahi Y Abbas, Mohammed Achor, Samson A Adeyemi, Yahya E Choonara, Yusuf Saidu, Lawal S Bilbis
{"title":"Isolation and characterization of medicinal plant-based extracellular vesicles as nano delivery systems for ascorbic acid.","authors":"Zainab Muhammad, Suleiman A Muhammad, Abdullahi Y Abbas, Mohammed Achor, Samson A Adeyemi, Yahya E Choonara, Yusuf Saidu, Lawal S Bilbis","doi":"10.1080/02652048.2024.2443430","DOIUrl":"10.1080/02652048.2024.2443430","url":null,"abstract":"<p><strong>Aim: </strong>Plant-derived extracellular vesicles (EVs) are natural nanovesicles for drug delivery. This study isolated and characterised EVs from medicinal plants as delivery vehicles.</p><p><strong>Methods: </strong>Precipitation method was employed for the isolation and characterised using DLS, SEM, and TEM. The encapsulation efficiency (EE) and antioxidant activity of ascorbic acid (AA)-EVs were evaluated.</p><p><strong>Results: </strong>The total yields of lyophilised vesicles per weight of the sample were 6.0, 8.6 and 9.2 mg/g for garlic, turmeric and ginger, respectively. Mean size of garlic-derived EVs, ginger-derived EVs, and turmeric-derived EVs were 101.0 ± 6.7, 226.4 ± 62.2 and 90.7 ± 2.5 nm, respectively. The zeta potential of the EVs was between -33.2 ± 10.9 and -28.8 ± 8.43 mV. Spherical morphology of the nanovesicles was confirmed by SEM and TEM. The EE of the EVs was between 78.1 ± 2.8% and 87.2 ± 1.4%.</p><p><strong>Conclusion: </strong>Overall, the antioxidant activity of AA-loaded EVs was better compared to free AA. This study provides evidence that these medicinal plants are rich sources for developing nanotherapeutics.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"120-131"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ebru Kilicay, Ebru Erdal, Özge Kübra Karadag, Baki Hazer
{"title":"Evaluation of the antimicrobial and anticancer potential of a modified silver nanoparticle-impregnated carrier system.","authors":"Ebru Kilicay, Ebru Erdal, Özge Kübra Karadag, Baki Hazer","doi":"10.1080/02652048.2024.2443437","DOIUrl":"10.1080/02652048.2024.2443437","url":null,"abstract":"<p><p>This study aimed to develop silver nanoparticles embedded in poly(ricinoleic acid)-poly(methyl methacrylate)-poly(ethylene glycol) (AgNPsPRici-PMMA-PEG) nanoparticles (NPs) containing caffeic acid (Caff) and tetracycline hydrochloride (TCH) for treating infections and cancer in bone defects. The block copolymers were synthesised via free radical polymerisation. NPs were prepared using the solvent evaporation method and characterised by FTIR, HNMR, SEM, DSC, TGA, and DLS. Drug loading (LE), encapsulation efficiency (EE), antimicrobial activity, cytotoxicity, and <i>in vitro</i> release studies were conducted. The NPs exhibited a size of 198 ± 2.89 nm, a narrow size distribution (PDI < 0.1), and a zeta potential of -27.5 ± 0.13 mV. The EE of Caff were 73 ± 0.09% w/w and 78 ± 0.32% w/w. Caff NPs showed prolonged release (69 ± 0.23% w/w), cytotoxicity with the cell viability of 66.85 ± 10.51% in SaOS cells, and antimicrobial zones ranging from 1.5 ± 0.3 to 4.2 ± 0.2 mm. TCH-Caff-AgNPsPRici-PMMA-PEG NPs exhibited promising therapeutic potential for infection and cancer treatment in bone defects.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"142-160"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}