Journal of microencapsulation最新文献

筛选
英文 中文
Paliperidone-loaded nose to brain targeted NLCS: optimisation, evaluation, histopathology and pharmacokinetic estimation for schizophernia. 帕潘立酮(Paliperidone-loaded)鼻脑靶向 NLCS:用于精神分裂症的优化、评估、组织病理学和药代动力学估算。
IF 3 4区 医学
Journal of microencapsulation Pub Date : 2024-12-01 Epub Date: 2024-11-16 DOI: 10.1080/02652048.2024.2426545
Manish Ashok Khedkar, Vipin Sharma, Meraj Anjum, Sanjay Singh, Kamal Shah, Perwez Alam, Hitesh Kumar Dewangan
{"title":"Paliperidone-loaded nose to brain targeted NLCS: optimisation, evaluation, histopathology and pharmacokinetic estimation for schizophernia.","authors":"Manish Ashok Khedkar, Vipin Sharma, Meraj Anjum, Sanjay Singh, Kamal Shah, Perwez Alam, Hitesh Kumar Dewangan","doi":"10.1080/02652048.2024.2426545","DOIUrl":"10.1080/02652048.2024.2426545","url":null,"abstract":"<p><p>Study was to develop a nanostructured-lipid-careers (NLCs) of paliperidone (PLP) for nose-to-brain targeting. NLCs was prepared by sonication, high-shear homogenisation method, and characterised their mean diameter, PDI, zeta-potential, morphology (by SEM, TEM and AFM), entrapment efficiency, drug loading, <i>in vitro</i> release, interaction study (by FTIR), and stability. Further, <i>ex vivo</i> permeation and ciliotoxicity performed in sheep nasal mucosa, and <i>in vivo</i> biodistribution/pharmacokinetic was performed in rats for schizophernia. Developed NLCs showed spherical and clearly 3-dimentinal structure with 129 ± 2.7 nm mean diameter, 0.304 ± 0.003 PDI, -7.61 ± 0.56 mV zeta-potential, 58.16 ± 0.17% entrapment efficiency, 65.8 ± 2% drug loading and 74.32 ± 0.003% release in 12 h, followed by Higuchi model. <i>Ex vivo</i> study showed NLCs have three times higher permeation, compare to pure drug (around 71.50.32% in 6 h) and 3.98 g/cm<sup>2</sup>/h steady sate flux. The blood/brain ratio given by intranasally have higher compare to IV route, and 94.53 ± 21.45% drug targeting efficiency in brain. In conclusion, NLCs have easily crossed BBB, higher drug delivery and effective for schizophrenia in given by intranasal.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"832-843"},"PeriodicalIF":3.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comparative analysis of PLA and PCL microparticles for hydrophilic and hydrophobic drugs. 聚乳酸(PLA)和聚苯乙烯(PCL)微颗粒用于亲水性和疏水性药物的比较分析。
IF 3 4区 医学
Journal of microencapsulation Pub Date : 2024-12-01 Epub Date: 2024-11-05 DOI: 10.1080/02652048.2024.2423631
Subrat Kumar Panigrahi, Sougat Das, Saptarshi Majumdar
{"title":"A comparative analysis of PLA and PCL microparticles for hydrophilic and hydrophobic drugs.","authors":"Subrat Kumar Panigrahi, Sougat Das, Saptarshi Majumdar","doi":"10.1080/02652048.2024.2423631","DOIUrl":"10.1080/02652048.2024.2423631","url":null,"abstract":"<p><p>This study aims to investigate Polylactic Acid (PLA) and Polycaprolactone (PCL) polymers for microencapsulation of hydrophilic and hydrophobic anti-glaucoma drugs using an emulsion-based solvent evaporation technique. Microparticle size was analysed using optical microscopy, while drug-polymer interactions through Dynamic-Light-Scattering (DLS) and Fourier-Transform-Infra-red/Attenuated-Total-Reflection spectroscopy (FTIR/ATR). <i>In vitro</i>, drug release studies were performed to investigate drug encapsulation and release profiles. Spherical microparticles, with particle size 94 ± 6.9 μm for PCL-based and 100 ± 3.74 μm for PLA-based formulation, were obtained. Drug release studies showed 100% release over about 32 days, with encapsulation efficiency (%EE) and drug loading (%w/w) reaching up to 95 and 2.84% for PLA-based and 97 and 2.91% for PCL-based microparticles, respectively. DLS studies reveal an increase in hydrodynamic radius (<i>R<sub>H</sub></i>), which correlates to enhanced drug encapsulation. So, the nature of the drug and polymer significantly impacts drug encapsulation and release, with drug-polymer interactions playing a crucial role alongside experimental parameters.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"804-817"},"PeriodicalIF":3.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of poly(ε-caprolactone) microspheres on population pharmacokinetic/pharmacodynamic model of a simple coumarin. 聚(ε-己内酯)微球对一种简单香豆素的群体药代动力学/药效学模型的影响
IF 3 4区 医学
Journal of microencapsulation Pub Date : 2024-12-01 Epub Date: 2024-10-26 DOI: 10.1080/02652048.2024.2418606
Paola A Cárdenas, Izabel Almeida Alves, Bibiana Verlindo De Araujo, Diana Marcela Aragón
{"title":"Effect of poly(ε-caprolactone) microspheres on population pharmacokinetic/pharmacodynamic model of a simple coumarin.","authors":"Paola A Cárdenas, Izabel Almeida Alves, Bibiana Verlindo De Araujo, Diana Marcela Aragón","doi":"10.1080/02652048.2024.2418606","DOIUrl":"10.1080/02652048.2024.2418606","url":null,"abstract":"<p><p>This study aims to evaluated the impact of poly(ε-caprolactone) (PCL) microspheres on the pharmacokinetics and pharmacodynamics (PopPK/PD) of 6-methylcoumarin (6MC). For this, PCL microspheres loaded with 6MC were prepared using the emulsification-evaporation method. Particle size, zeta potential, drug loading, and entrapment efficiency were characterised by dynamic light scattering and UV spectrophotometry. In vitro release and pharmacokinetics in Wistar rats were assessed for free and encapsulated 6MC. Anti-inflammatory activity was evaluated using the carrageenan-induced paw edoema model, with PopPK and PopPK/PD models developed. Microspheres showed diameters between 2.9 and 7.1 µm, zeta potentials of -10 to -15 mV, and drug loading of 0.24 mg/mg. Encapsulation efficiency was 45.5% to 75.9%. PopPK models showed enhanced absorption and distribution, with increased anti-inflammatory potency of encapsulated 6MC. PCL microspheres significantly improved the pharmacokinetic and pharmacodynamic profiles of 6MC, enhancing its therapeutic potential for lipophilic drugs.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"739-753"},"PeriodicalIF":3.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physicochemical stability and controlled release of vitamin D3-loaded emulsions stabilised by whey protein isolate-basil seed gum conjugates. 用乳清蛋白分离物-巴西杉籽胶共轭物稳定的维生素 D3 负载乳剂的理化稳定性和控释。
IF 3 4区 医学
Journal of microencapsulation Pub Date : 2024-12-01 Epub Date: 2024-11-20 DOI: 10.1080/02652048.2024.2418615
Farzaneh Kouravand, Fakhri Shahidi, Milad Fathi, Arash Koocheki, Sahar Roshanak
{"title":"Physicochemical stability and controlled release of vitamin D<sub>3</sub>-loaded emulsions stabilised by whey protein isolate-basil seed gum conjugates.","authors":"Farzaneh Kouravand, Fakhri Shahidi, Milad Fathi, Arash Koocheki, Sahar Roshanak","doi":"10.1080/02652048.2024.2418615","DOIUrl":"10.1080/02652048.2024.2418615","url":null,"abstract":"<p><strong>Aim: </strong>The present study was conducted to produce a new carrier containing whey protein isolate-basil seed gum (WPI-BSG) conjugate to achieve superior physicochemical stability of emulsions containing vitamin D<sub>3</sub> (Vit-D<sub>3</sub>).</p><p><strong>Methods: </strong>Zeta-potential and particle size analysis, spectrophotometric method, encapsulation efficiency, loading capacity and dialysis bag method were used to examined physicochemical stability and Vit-D<sub>3</sub> release from the emulsions.</p><p><strong>Results: </strong>The conjugate-stabilised emulsion showed maximum encapsulation efficiency (87.05 ± 3.37% (w/w)) and loading capacity (5.43 ± 0.08% (w/w)) at the Vit-D3 concentration of 200 and 300 mg/kg. This emulsion also demonstrated good physical stability after 30 days of storage with the zeta potential and mean droplet size of -79.60 ± 0.62 mV and 1346.82 ± 5.95 nm, respectively. Additionally, the conjugate-stabilised emulsion had a maximum Vit-D<sub>3</sub> retention (chemical stability) of 72.79 ± 3.58% after a 15-day storage period.</p><p><strong>Conclusion: </strong>Our findings suggest that the conjugate-stabilised emulsion has a good stabilising capacity as a carrier for hydrophobic compounds such as Vit-D<sub>3</sub>.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"770-781"},"PeriodicalIF":3.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dermal drug delivery via bilosomes: a synergistic integration for better therapeutic outcomes. 通过双糖体进行皮肤给药:协同整合,提高疗效。
IF 3 4区 医学
Journal of microencapsulation Pub Date : 2024-12-01 Epub Date: 2024-11-07 DOI: 10.1080/02652048.2024.2423618
Kartik Aralelimath, Jagannath Sahoo, Sarika Wairkar
{"title":"Dermal drug delivery <i>via</i> bilosomes: a synergistic integration for better therapeutic outcomes.","authors":"Kartik Aralelimath, Jagannath Sahoo, Sarika Wairkar","doi":"10.1080/02652048.2024.2423618","DOIUrl":"10.1080/02652048.2024.2423618","url":null,"abstract":"<p><p>The dermal route is commonly used to deliver the drugs at the targeted site and achieve maximum therapeutic efficacy. The stratum corneum, the uppermost layer of the skin, presents a significant diffusional barrier for most drugs. Various nanoformulations face challenges such as limited drug absorption and inadequate retention at the targeted site, frequently hindering therapeutic efficacy. Researchers are increasingly exploring innovative strategies that leverage nanotechnology and specialized carriers to address these challenges and enhance the outcomes of dermal medications. A novel drug delivery system, bilosomes, has been designed as a potential vesicular carrier system for the dermal route. Bilosomes are colloidal, lipid-based vesicles stabilized with bile salts, offering greater stability during storage and transportation. The lipid bilayer of bilosomes imparts ultra-flexibility, facilitating penetration through the stratum corneum. This review explores the use of bilosomes in dermal formulations for treating diverse diseases, their developmental techniques, and characterization, and it sheds light on their advantages over traditional lipid nanocarriers.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"818-831"},"PeriodicalIF":3.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142591086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leflunomide nanocarriers: a new prospect of therapeutic applications. 来氟米特纳米载体:治疗应用的新前景。
IF 3 4区 医学
Journal of microencapsulation Pub Date : 2024-12-01 Epub Date: 2024-09-25 DOI: 10.1080/02652048.2024.2407373
Mariam Zewail
{"title":"Leflunomide nanocarriers: a new prospect of therapeutic applications.","authors":"Mariam Zewail","doi":"10.1080/02652048.2024.2407373","DOIUrl":"10.1080/02652048.2024.2407373","url":null,"abstract":"<p><p>Leflunomide (LEF) is a well-known disease-modifying anti-rheumatic agent (DMARDs) that was approved in 1998 for rheumatoid arthritis (RA) management. It is enzymatically converted into active metabolite teriflunomide (TER) inside the body. LEF and TER possess several pharmacological effects in a variety of diseases including multiple sclerosis, cancer, viral infections and neurobehavioral brain disorders. Despite the aforementioned pharmacological effects exploring these effects in nanomedicine applications has been focused mainly on RA and cancer treatment. This review summarises the main pharmacological, and pharmacokinetic effects of LEF along with highlighting the applications of nanoencapsulation of LEF and its metabolite in different diseases.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"715-738"},"PeriodicalIF":3.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142348431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nano-emulsion based on Santolina chamaecyparissus essential oil potentiates the cytotoxic and apoptotic effects of Doxorubicin: an in vitro study. 基于山苍子精油的纳米乳液可增强多柔比星的细胞毒性和凋亡效应:一项体外研究。
IF 3 4区 医学
Journal of microencapsulation Pub Date : 2024-11-01 Epub Date: 2024-08-02 DOI: 10.1080/02652048.2024.2386287
Sahar M AlMotwaa, Waad A Al-Otaibi
{"title":"Nano-emulsion based on <i>Santolina chamaecyparissus</i> essential oil potentiates the cytotoxic and apoptotic effects of Doxorubicin: an <i>in vitro</i> study.","authors":"Sahar M AlMotwaa, Waad A Al-Otaibi","doi":"10.1080/02652048.2024.2386287","DOIUrl":"10.1080/02652048.2024.2386287","url":null,"abstract":"<p><strong>Aim: </strong>This study was aimed at investigating the cytotoxic effect of a novel combination of doxorubicin (DOX) and nano-formulation of <i>Santolina chamaecyparissus</i> L. essential oil (SCEO-NANO) on hepatic (HepG2) and colon (HT29) cancer cell lines.</p><p><strong>Methods: </strong>A nano-emulsion was prepared by high-pressure homogenisation, then analysed by zetasizer and Fourier transform infrared spectroscopy. HepG2 and HT29 cells were used in <i>in vitro</i> tests for apoptosis detection.</p><p><strong>Results: </strong>Formulated droplet size increased in DOX@SCEO-NANO/DOX to 11.54 ± 0.02 with uniform distribution (PDI = 0.13 ± 0.01), when compared with SCEO-NANO (size: 8.91 ± 0.02 nm; PDI = 0.1 ± 0.02). In both cells, DOX@SCEO-NANO/DOX led to a considerable reduction in colony formation. Compared to DOX, apoprotein proteins were overexpressed in HepG2 cells, showing increases of 8.66-fold for caspase-3 and 4.24-fold for the Bax/Bcl-2 ratio. In HT29 cells, ROS-dependent necrosis and apoptosis were seen. Comparing DOX@SCEO-NANO/DOX versus DOX, greater levels of caspase-3 and the Bax/Bcl-2 ratio were observed.</p><p><strong>Conclusion: </strong>The DOX@SCEO-NANO/DOX formulation showed potential for targeted eradication of colon adenocarcinoma and hepatocellular carcinoma cells.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"503-518"},"PeriodicalIF":3.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141875115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The assessment of pharmacokinetics and neuroprotective effect of berberine hydrochloride-embedded albumin nanoparticles via various administration routes: comparative in-vivo studies in rats. 通过不同给药途径评估盐酸小檗碱嵌入白蛋白纳米颗粒的药代动力学和神经保护作用:大鼠体内对比研究。
IF 3 4区 医学
Journal of microencapsulation Pub Date : 2024-11-01 Epub Date: 2024-09-04 DOI: 10.1080/02652048.2024.2395976
Hany G Attia, Maha E Elmataeeshy, Mohamed Aleraky, Samar R Saleh, Doaa A Ghareeb, Maha A El Demellawy, Hanan M El-Nahas, Tarek M Ibrahim
{"title":"The assessment of pharmacokinetics and neuroprotective effect of berberine hydrochloride-embedded albumin nanoparticles via various administration routes: comparative <i>in-vivo</i> studies in rats.","authors":"Hany G Attia, Maha E Elmataeeshy, Mohamed Aleraky, Samar R Saleh, Doaa A Ghareeb, Maha A El Demellawy, Hanan M El-Nahas, Tarek M Ibrahim","doi":"10.1080/02652048.2024.2395976","DOIUrl":"10.1080/02652048.2024.2395976","url":null,"abstract":"<p><p>The current study aimed to evaluate the pharmacokinetics and neuroprotective effect of well-characterised berberine-bovine serum albumin (BBR-BSA) nanoparticles. BBR-BSA nanoparticles were generated by desolvation method. Entrapment efficiency, loading capacity, particle size, polydispersity index, surface morphology, thermal stability, and <i>in-vitro</i> release were estimated. <i>In-vitro</i> pharmacokinetic and tissue distribution were conducted. Their neuroprotection was evaluated against lipopolysaccharides-induced neurodegeneration. BBR-BSA nanoparticles showed satisfactory particle size (202.60 ± 1.20 nm) and entrapment efficiency (57.00 ± 1.56%). Results confirmed the formation of spheroid-thermal stable nanoparticles with a sustained drug release over 48 h. Sublingual and intranasal routes had higher pharmacokinetic plasma profiles than other routes, with C<sub>max</sub> values at 0.75 h (444 ± 77.79 and 259 ± 42.41 ng/mL, respectively). BBR and its metabolite distribution in the liver and kidney were higher than in plasma. Intranasal and sublingual treatment improves antioxidants, proinflammatory, amyloidogenic biomarkers, and brain architecture, protecting the brain. In conclusion, neuroinflammation and neurodegeneration may be prevented by intranasal and sublingual BBR-BSA nanoparticles.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"576-600"},"PeriodicalIF":3.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoparticles encapsulated in Abelmoschus esculentus polysaccharide-based pellets as colon targeting approach. 包裹在阿贝摩斯多糖颗粒中的纳米粒子作为结肠靶向方法。
IF 3 4区 医学
Journal of microencapsulation Pub Date : 2024-11-01 Epub Date: 2024-08-20 DOI: 10.1080/02652048.2024.2390951
Akshita Arora, Anshul Sharma, Shamsher Singh, Rajveer Singh, Amrinder Singh, Dipti Kakkar, Nitin Sharma
{"title":"Nanoparticles encapsulated in <i>Abelmoschus esculentus</i> polysaccharide-based pellets as colon targeting approach.","authors":"Akshita Arora, Anshul Sharma, Shamsher Singh, Rajveer Singh, Amrinder Singh, Dipti Kakkar, Nitin Sharma","doi":"10.1080/02652048.2024.2390951","DOIUrl":"10.1080/02652048.2024.2390951","url":null,"abstract":"<p><strong>Aim(s): </strong>This article explores the application of mesalazine-loaded nanoparticles (MLZ-NPs) encapsulated in <i>Abelmoschus esculentus</i> plant polysaccharide-based pellets (MLZ-NPs-Pellets) for ulcerative colitis.</p><p><strong>Methods: </strong>MLZ-NPs were prepared and evaluated for diameter, PDI, and entrapment efficiency. <i>In-vitro</i> efficacy study was conducted on Caco-2 cells. MLZ-NPs were encapsulated in polysaccharides to form MLZ-NPs-Pellets and characterised for efficacy in animals and targeting efficiency in human volunteers.</p><p><strong>Results: </strong>Optimised batch of MLZ-NPs were characterised for diameter, PDI, zeta potential and entrapment efficiency which was found to be 145.42 ± 6.75 nm, 0.214 ± 0.049, -31.63 mV and 77.65 ± 2.33(%w/w) respectively. ROS, superoxide and NF-kβ were well controlled in Caco-2 cells when treated with MLZ-NPs. <i>In-vivo</i> data revealed that some parameters (body weight, colon length, lipid peroxidase, and glutathione) recovered significantly in the DSS-induced mice model treated with oral MLZ-NPs-Pellets. Gamma scintigraphy revealed that the formulation can effectively target the colon within 600 min.</p><p><strong>Conclusion: </strong>MLZ-NPs-Pellets can be effectively used for microbial-triggered colon targeting approach in treating ulcerative colitis.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"519-534"},"PeriodicalIF":3.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction. 更正。
IF 3 4区 医学
Journal of microencapsulation Pub Date : 2024-11-01 Epub Date: 2024-08-29 DOI: 10.1080/02652048.2024.2394884
{"title":"Correction.","authors":"","doi":"10.1080/02652048.2024.2394884","DOIUrl":"10.1080/02652048.2024.2394884","url":null,"abstract":"","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"679-680"},"PeriodicalIF":3.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142108266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信