DaІia E Gaber, Alanood S Almurshedi, Basmah N Aldosari, Samiah Alhabardi, Randa M Zaki, Mahasen A Radwan, Xien Chen
{"title":"一种新型拉莫三嗪纳米乳凝胶的设计、体外和体内评价。","authors":"DaІia E Gaber, Alanood S Almurshedi, Basmah N Aldosari, Samiah Alhabardi, Randa M Zaki, Mahasen A Radwan, Xien Chen","doi":"10.1080/02652048.2025.2482048","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>This study aimed to enhance the bioavailability and therapeutic efficacy of lamotrigine (LMG), an antiepileptic drug with low solubility, by formulating it into a nasal nanoemulsion (NE) for effective epilepsy control.</p><p><strong>Methods: </strong>LMG was incorporated into a nasal nanoemulsion (LMG-NE) using a 3<sup>2</sup> factorial design via spontaneous emulsification method. LMG-NEs were characterised for drug loading (DL), entrapment efficiency (EE%), particle size, microscopic examination, rheological profile, phosphatidylcholine liposome uptake, in vitro release, anticonvulsant activity, and in vivo pharmacokinetics.</p><p><strong>Results: </strong>The optimal formulation exhibited a DL of 79.03 ± 0.5 (w/w), an EE% of 80.2 ± 3.0%, a mean diameter of 182.78 ± 22.76 nm, and a zeta potential of 0.60 ± 0.04 mV. LMG was rapidly released, with 91.87% ± 4.54% of drug was released within 2 hours. The area under the curve (AUC<sub>0-24</sub>) showed a 1.84-fold increase compared to standard formulations.</p><p><strong>Conclusion: </strong>LMG-NE presents a promising alternative for epilepsy treatment, potentially reducing peripheral side effects and improving therapeutic outcomes.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"337-351"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, in vitro, and in vivo evaluation of a new nanoemulsion gel of lamotrigine for application via nasal route.\",\"authors\":\"DaІia E Gaber, Alanood S Almurshedi, Basmah N Aldosari, Samiah Alhabardi, Randa M Zaki, Mahasen A Radwan, Xien Chen\",\"doi\":\"10.1080/02652048.2025.2482048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>This study aimed to enhance the bioavailability and therapeutic efficacy of lamotrigine (LMG), an antiepileptic drug with low solubility, by formulating it into a nasal nanoemulsion (NE) for effective epilepsy control.</p><p><strong>Methods: </strong>LMG was incorporated into a nasal nanoemulsion (LMG-NE) using a 3<sup>2</sup> factorial design via spontaneous emulsification method. LMG-NEs were characterised for drug loading (DL), entrapment efficiency (EE%), particle size, microscopic examination, rheological profile, phosphatidylcholine liposome uptake, in vitro release, anticonvulsant activity, and in vivo pharmacokinetics.</p><p><strong>Results: </strong>The optimal formulation exhibited a DL of 79.03 ± 0.5 (w/w), an EE% of 80.2 ± 3.0%, a mean diameter of 182.78 ± 22.76 nm, and a zeta potential of 0.60 ± 0.04 mV. LMG was rapidly released, with 91.87% ± 4.54% of drug was released within 2 hours. The area under the curve (AUC<sub>0-24</sub>) showed a 1.84-fold increase compared to standard formulations.</p><p><strong>Conclusion: </strong>LMG-NE presents a promising alternative for epilepsy treatment, potentially reducing peripheral side effects and improving therapeutic outcomes.</p>\",\"PeriodicalId\":16391,\"journal\":{\"name\":\"Journal of microencapsulation\",\"volume\":\" \",\"pages\":\"337-351\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microencapsulation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/02652048.2025.2482048\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2025.2482048","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Design, in vitro, and in vivo evaluation of a new nanoemulsion gel of lamotrigine for application via nasal route.
Aims: This study aimed to enhance the bioavailability and therapeutic efficacy of lamotrigine (LMG), an antiepileptic drug with low solubility, by formulating it into a nasal nanoemulsion (NE) for effective epilepsy control.
Methods: LMG was incorporated into a nasal nanoemulsion (LMG-NE) using a 32 factorial design via spontaneous emulsification method. LMG-NEs were characterised for drug loading (DL), entrapment efficiency (EE%), particle size, microscopic examination, rheological profile, phosphatidylcholine liposome uptake, in vitro release, anticonvulsant activity, and in vivo pharmacokinetics.
Results: The optimal formulation exhibited a DL of 79.03 ± 0.5 (w/w), an EE% of 80.2 ± 3.0%, a mean diameter of 182.78 ± 22.76 nm, and a zeta potential of 0.60 ± 0.04 mV. LMG was rapidly released, with 91.87% ± 4.54% of drug was released within 2 hours. The area under the curve (AUC0-24) showed a 1.84-fold increase compared to standard formulations.
Conclusion: LMG-NE presents a promising alternative for epilepsy treatment, potentially reducing peripheral side effects and improving therapeutic outcomes.
期刊介绍:
The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation.
The journal covers:
Chemistry of encapsulation materials
Physics of release through the capsule wall and/or desorption from carrier
Techniques of preparation, content and storage
Many uses to which microcapsules are put.