In vitro and in vivo PK/PD evaluation of glibenclamide nanosponges.

IF 3 4区 医学 Q2 CHEMISTRY, APPLIED
Journal of microencapsulation Pub Date : 2025-06-01 Epub Date: 2025-03-27 DOI:10.1080/02652048.2025.2483805
Marwa G Zaima, Shadeed Gad, Hany M Ibrahim
{"title":"<i>In vitro</i> and <i>in vivo</i> PK/PD evaluation of glibenclamide nanosponges.","authors":"Marwa G Zaima, Shadeed Gad, Hany M Ibrahim","doi":"10.1080/02652048.2025.2483805","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>This study aimed to develop glibenclamide (GLC)-loaded nanosponges (NS) using β-cyclodextrin to improve dissolution rate and oral bioavailability of GLC.</p><p><strong>Methods: </strong>Blank NS were produced using solvent technique with varying ratios of β-cyclodextrin and carbonyl-diimidazole. The hyper-crosslinked β-cyclodextrin was dispersed in de-ionized water, and then lyophilised. The GLC-loaded-NS were prepared using different ratios of GLC to the previously developed NS<sub>1:4</sub> and evaluated for particle size, zeta potential, TEM, SEM, DSC, PXRD, FTIR, loading efficiency, pharmacokinetically, pharmacodynamically, histologically and effect of storage.</p><p><strong>Results: </strong>GLC:NS<sub>1:4</sub> showed highest solubility (46.36 ± 2.44%w/v), entrapment efficiency (36.1 ± 0.57%w/v), particle size 352 ± 6.1 nm and Z-potential -25.3 ± 0.3 mV. GLC:NS<sub>1:4</sub> exhibited porous, spherical nanoparticles, with confirmed drug encapsulation. In-vitro and in-vivo evaluations demonstrated an initial burst followed by sustained drug release, reducing blood glucose levels by 79.6 ± 0.43%. The effect of storage revealed no significant changes after 3 months.</p><p><strong>Conclusion: </strong>GLC-NS complexation improved oral bioavailability and extended drug release, suggesting better patient compliance.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"352-367"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2025.2483805","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: This study aimed to develop glibenclamide (GLC)-loaded nanosponges (NS) using β-cyclodextrin to improve dissolution rate and oral bioavailability of GLC.

Methods: Blank NS were produced using solvent technique with varying ratios of β-cyclodextrin and carbonyl-diimidazole. The hyper-crosslinked β-cyclodextrin was dispersed in de-ionized water, and then lyophilised. The GLC-loaded-NS were prepared using different ratios of GLC to the previously developed NS1:4 and evaluated for particle size, zeta potential, TEM, SEM, DSC, PXRD, FTIR, loading efficiency, pharmacokinetically, pharmacodynamically, histologically and effect of storage.

Results: GLC:NS1:4 showed highest solubility (46.36 ± 2.44%w/v), entrapment efficiency (36.1 ± 0.57%w/v), particle size 352 ± 6.1 nm and Z-potential -25.3 ± 0.3 mV. GLC:NS1:4 exhibited porous, spherical nanoparticles, with confirmed drug encapsulation. In-vitro and in-vivo evaluations demonstrated an initial burst followed by sustained drug release, reducing blood glucose levels by 79.6 ± 0.43%. The effect of storage revealed no significant changes after 3 months.

Conclusion: GLC-NS complexation improved oral bioavailability and extended drug release, suggesting better patient compliance.

格列本脲纳米海绵的体内外PK/PD评价。
目的:利用β-环糊精制备格列本脲(GLC)负载纳米海绵,提高GLC的溶出度和口服生物利用度。方法:采用不同比例的β-环糊精和羰基-二咪唑溶剂法制备空白NS。将超交联β-环糊精分散在去离子水中,然后进行冻干。采用不同GLC与NS1:4的比例制备GLC- ns,并对其粒径、zeta电位、TEM、SEM、DSC、PXRD、FTIR、载药效率、药代动力学、药效学、组织学和储存效果进行评价。结果:GLC:NS1:4具有最高的溶解度(46.36±2.44%w/v)、包封效率(36.1±0.57%w/v)、粒径(352±6.1 nm)和z电位(-25.3±0.3 mV)。GLC:NS1:4显示出多孔球形纳米颗粒,具有药物包封性。体外和体内评估表明,初始爆发后持续释放药物,降低血糖水平79.6±0.43%。3个月后贮藏效果无明显变化。结论:GLC-NS络合改善了口服生物利用度,延长了药物释放时间,表明患者的依从性更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of microencapsulation
Journal of microencapsulation 工程技术-工程:化工
CiteScore
6.30
自引率
2.60%
发文量
39
审稿时长
3 months
期刊介绍: The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation. The journal covers: Chemistry of encapsulation materials Physics of release through the capsule wall and/or desorption from carrier Techniques of preparation, content and storage Many uses to which microcapsules are put.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信