{"title":"Preparation of double-loaded bitter ginseng derivative B21-DOX liposomes co-modified with SP94 and BR2 ligand and its in vitro anti-hepatocarcinogenic effect.","authors":"Lin Jing, Jiajia Zhang, Lili Li, Simei Luo, Zijun Tang, Xu Liu, Yonglong Zhong, Mingqing Yuan","doi":"10.1080/02652048.2024.2390955","DOIUrl":"10.1080/02652048.2024.2390955","url":null,"abstract":"<p><strong>Aim: </strong>To construct a novel liposomal drug delivery system co-modified with SP94 and BR2 ligands, encapsulating both the bitter ginseng derivative B21 and doxorubicin (DOX), to achieve superior anti-tumour efficacy and reduced toxic side effects.</p><p><strong>Methods: </strong>Liposomes were prepared using an organic phase reaction method, with B21 encapsulated in the lipid phase and DOX in the aqueous phase. The liposomes were further modified with SP94 and BR2 peptides. The characterisations, cytotoxicity, and in vitro targeting effects were assessed through various methods including ultraviolet spectrophotometry, high-performance liquid chromatography, nano-size analysis, ultrafiltration centrifugation, dialysis, transmission electron microscopy, flow cytometry, Methylthiazolyldiphenyl-tetrazolium bromide assay, confocal laser scanning microscopy, transwell assay, and tumorsphere assay.</p><p><strong>Results: </strong>SP94/BR2-B21/DOX-LP liposomes were spherical with an average diameter of 120.87 ± 1.00 nm, a polydispersity index (PDI) of 0.223 ± 0.006, and a surface charge of -23.1 ± 1.27 mV. The encapsulation efficiencies for B21 and DOX were greater than 85% and 97% (mg/mg), respectively. The results indicated that SP94/BR2-B21/DOX-LP exhibited enhanced targeting and cytotoxicity compared to single-ligand modified and unmodified liposomes, with the combined encapsulation of B21 and DOX showing synergistic anti-hepatocarcinogenic effects.</p><p><strong>Conclusion: </strong>SP94/BR2-B21/DOX-LP liposomes represent a promising targeted drug delivery system for hepatocellular carcinoma, offering improved membrane penetration, enhanced therapeutic efficacy, and reduced systemic toxicity.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"535-546"},"PeriodicalIF":3.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The potential of turmeric extract-loaded chitosan microparticles for the treatment of gastrointestinal disorders.","authors":"Pimonsri Mittraparp-Arthorn, Suwipa Ungphaiboon, Chutha Takahashi Yupanqui, Sirikan Suwannasin, Chutikan Wijukkul, Niwan Tanmanee, Teerapol Srichana","doi":"10.1080/02652048.2024.2390958","DOIUrl":"10.1080/02652048.2024.2390958","url":null,"abstract":"<p><strong>Aim: </strong>To develop turmeric extract-loaded chitosan microparticles for treating gastrointestinal disorders.</p><p><strong>Methods: </strong>The microparticles were prepared using a spray-drying process, optimised the characteristics by biomarker loading, and encapsulation efficiency, and assessed for bioactivities related to gastrointestinal diseases.</p><p><strong>Results: </strong>The optimised microparticles were spherical, with a mean diameter of 2.11 ± 0.34 µm, a SPAN of 4.46 ± 0.68, a zeta potential of +37.6 ± 0.2 mV, loading of 15.7% w/w curcuminoids, 5.4% w/w ar-turmerone, and encapsulation efficiency of 63.26 ± 1.62% w/w curcuminoids and 43.75 ± 1.33% w/w ar-turmerone. Encapsulation of turmeric extract improved release at 6 h by 20 times and mucoadhesion by 3.6 times. The microparticles exhibited high acid-neutralising capacity (1.64 ± 0.34 mEq/g) and inhibited nitric oxide production about twice as effectively as the turmeric extract, while maintaining antioxidant and antibacterial activities.</p><p><strong>Conclusion: </strong>Encapsulation of turmeric extract in chitosan microparticles effectively enhanced therapeutic potential for gastrointestinal disorders.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"547-563"},"PeriodicalIF":3.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kamal Essifi, Mohamed Brahmi, Abdelghani Boussetta, Hassan Charii, Anass Ait Benhamou, Ali El Bachiri, Samira Salhi, Rachid Brahmi, Amine Moubarik, Abdesselam Tahani
{"title":"Synergistic enhancement of chlorophenols removal using eco-friendly alginate@montmorillonite hybrid bio-capsules: insights from encapsulation and kinetic release studies.","authors":"Kamal Essifi, Mohamed Brahmi, Abdelghani Boussetta, Hassan Charii, Anass Ait Benhamou, Ali El Bachiri, Samira Salhi, Rachid Brahmi, Amine Moubarik, Abdesselam Tahani","doi":"10.1080/02652048.2024.2395968","DOIUrl":"10.1080/02652048.2024.2395968","url":null,"abstract":"<p><p>This study investigates the synergistic effects of alginate@montmorillonite (Alg@Mt) hybrid microcapsules for enhancing water purification, focusing on improving the encapsulation of hydrophobic contaminants. Alg@Mt microcapsules were prepared through ionotropic gelation. Characterisation was performed using SEM-EDX, FTIR, XRD, and TGA. Encapsulation efficiency (EE), loading capacity (LC), and release behaviour were also examined. Alg@Mt microcapsules effectively removed phenol and its chlorinated derivatives from water. Incorporating Na-Mt improved structural and thermal properties, EE, and LC. Increasing the clay content to 60% (w/w) raised the EE of phenol and its more hydrophobic derivative, 2,4,6-trichlorophenol, from 39.74 ± 3.1% (w/w) and 63.91 ± 2% (w/w) to 60.56 ± 1.6% (w/w) and 82.28 ± 2.3% (w/w), respectively, with more controlled release rates, following Fickian diffusion mechanism. EE increased with phenolic substances hydrophobicity, while LC and release rates were inversely related. This approach is promising for removing hydrophobic contaminants from water.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"601-619"},"PeriodicalIF":3.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142055821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huma Hameed, Saleha Faheem, Komel Younas, Muhammad Jamshaid, Nelofer Ereej, Anam Hameed, Rabia Munir, Rabia Khokhar
{"title":"A comprehensive review on lipid-based nanoparticles via nose to brain targeting as a novel approach","authors":"Huma Hameed, Saleha Faheem, Komel Younas, Muhammad Jamshaid, Nelofer Ereej, Anam Hameed, Rabia Munir, Rabia Khokhar","doi":"10.1080/02652048.2024.2404414","DOIUrl":"https://doi.org/10.1080/02652048.2024.2404414","url":null,"abstract":"The central nervous system (CNS) has been a chief concern for millions of people worldwide, and many therapeutic medications are unable to penetrate the blood-brain barrier. Advancements in nanotec...","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":"40 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142249746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. H. Gonzalez-Posada, M. Mesa, L. Sierra, B. Lopez
{"title":"Interactions of human serum albumin with phosphate and Tris buffers: impact on paclitaxel binding and nanoparticles self-assembly","authors":"A. H. Gonzalez-Posada, M. Mesa, L. Sierra, B. Lopez","doi":"10.1080/02652048.2024.2389135","DOIUrl":"https://doi.org/10.1080/02652048.2024.2389135","url":null,"abstract":"To investigate the conformational changes in human serum albumin (HSA) caused by chemical (CD) and thermal denaturation (TD) at pH 7.4 and 9.9, crucial for designing controlled drug delivery system...","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":"65 1","pages":"1-12"},"PeriodicalIF":3.9,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142249747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huma Hameed, Mahtab Ahmad Khan, Ana Cláudia Paiva-Santos, Saleha Faheem, Aleena Khalid, Muhammad Sohaib Majid, Aiman Adnan, Fizza Rana
{"title":"Liposomes like advanced drug carriers: from fundamentals to pharmaceutical applications.","authors":"Huma Hameed, Mahtab Ahmad Khan, Ana Cláudia Paiva-Santos, Saleha Faheem, Aleena Khalid, Muhammad Sohaib Majid, Aiman Adnan, Fizza Rana","doi":"10.1080/02652048.2024.2376116","DOIUrl":"10.1080/02652048.2024.2376116","url":null,"abstract":"<p><strong>Aims: </strong>There are around 24 distinct lipid vesicles described in the literature that are similar to vesicular systems such as liposomes. Liposome-like structures are formed by combining certain amphiphilic lipids with a suitable stabiliser. Since their discovery and classification, self-assembled liposome-like structures as active drug delivery vehicles captured researchers' curiosity.</p><p><strong>Methodology: </strong>This comprehensive study included an in-depth literature search using electronic databases such as PubMed, ScienceDirect and Google Scholar, focusing on studies on liposome and liposomes like structure, discussed in literature till 2024, their sizes, benefits, drawback, method of preparation, characterisation and pharmaceutical applications.</p><p><strong>Results: </strong>Pharmacosomes, cubosomes, ethosomes, transethosomes, and genosomes, all liposome-like structures, have the most potential due to their smaller size with high loading capacity, ease of absorption, and ability to treat inflammatory illnesses. Genosomes are futuristic because of its affinity for DNA/gene transport, which is an area of focus in today's treatments.</p><p><strong>Conclusion: </strong>This review will critically analyse the composition, preparation procedures, drug encapsulating technologies, drug loading, release mechanism, and related applications of all liposome-like structures, highlighting their potential benefits with enhanced efficacy over each other and over traditional carriers by paving the way for exploring novel drug delivery systems in the Pharma industry.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"456-478"},"PeriodicalIF":3.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141580022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Therapeutic potential of Aloe vera-coated curcumin encapsulated nanoparticles in an Alzheimer-induced mice model: behavioural, biochemical and histopathological evidence.","authors":"Preeti Sharma, Pooja Kumari, Mansi Sharma, Rekha Sharma, Ajita Paliwal, Shriyansh Srivastava, Sumel Ashique, Mithun Bhowmick, Mohd Adnan, Reyaz Hassan Mir","doi":"10.1080/02652048.2024.2373715","DOIUrl":"10.1080/02652048.2024.2373715","url":null,"abstract":"<p><strong>Objective: </strong>The main purpose of the present study was to evaluate the therapeutic efficacy of Aloe vera-coated curcumin encapsulated nanoparticles in mitigating Alzheimer's disease progression in mice, by examining behavioural changes, biochemical markers, and histopathological alterations, thus elucidating its potential as a treatment strategy.</p><p><strong>Methods: </strong>The green synthesis method was used to synthesise this nanoformulation, which was then characterised using a variety of techniques, including percentage encapsulation efficacy, UV-visible spectroscopy, DLS, FT-IR, FESEM, and EDX. Several <i>in-vivo</i> assessments, including behavioural evaluations, dose optimisation studies, oxidative stress marker estimation, and histological studies, were conducted to determine the potential therapeutic impact of nanoformulation on the Alzheimer-induced mice model.</p><p><strong>Results: </strong>The synthesised nanoparticles show a mean diameter of 76.12 nm ±1.23, a PDI of 0.313 ± 0.02, a zeta potential of 6.27 ± 0.65 mV, and the percentage encapsulation efficiency between 90% and 95% indicating good stability of synthesised nanoformulation. With the help of Morris water maze, Y-maze, and novel object recognition assay, the learning capacity and memory were assessed, and the results show that the synthesised nanoformulation significantly decreased the transfer latency to reach baited arm or to the hidden platform within 7 days.</p><p><strong>Conclusion: </strong>The formulation demonstrated significant biochemical benefits and remarkable cognitive advantages, establishing it as a prospective therapeutic intervention option that is both safe and effective.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"403-418"},"PeriodicalIF":3.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141616592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lili Li, Lin Jing, Zijun Tang, Jingguo Du, Yonglong Zhong, Xu Liu, Mingqing Yuan
{"title":"Dual-targeting liposomes modified with BTP-7 and pHA for combined delivery of TCPP and TMZ to enhance the anti-tumour effect in glioblastoma cells.","authors":"Lili Li, Lin Jing, Zijun Tang, Jingguo Du, Yonglong Zhong, Xu Liu, Mingqing Yuan","doi":"10.1080/02652048.2024.2376114","DOIUrl":"10.1080/02652048.2024.2376114","url":null,"abstract":"<p><strong>Aim: </strong>To construct a novel nano-carrier with dual ligands to achieve superior anti-tumour efficacy and lower toxic side effects.</p><p><strong>Methods: </strong>Liposomes were prepared by thin film hydration method. Ultraviolet, high performance liquid chromatography, nano-size analyser, ultrafiltration centrifugation, dialysis, transmission electron microscope, flow cytometry, Cell Counting Kit-8, confocal laser scanning microscopy, transwell, and tumorsphere assay were used to study the characterisations, cytotoxicity, and <i>in vitro</i> targeting of dg-Bcan targeting peptide (BTP-7)/pHA-temozolomide (TMZ)/tetra(4-carboxyphenyl)porphyrin (TCPP)-Lip.</p><p><strong>Results: </strong>BTP-7/pHA-TMZ/TCPP-Lip was a spheroid with a mean diameters of 143 ± 3.214 nm, a polydispersity index of 0.203 ± 0.025 and a surface charge of -22.8 ± 0.425 mV. The drug loadings (TMZ and TCPP) are 7.40 ± 0.23% and 2.05 ± 0.03% (mg/mg); and the encapsulation efficiencies are 81.43 ± 0.51% and 84.28 ± 1.64% (mg/mg). The results showed that BTP-7/pHA-TMZ/TCPP-Lip presented enhanced targeting and cytotoxicity.</p><p><strong>Conclusion: </strong>BTP-7/pHA-TMZ/TCPP-Lip can specifically target the tumour cells to achieve efficient drug delivery, and improve the anti-tumour efficacy and reduces the systemic toxicity.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"419-433"},"PeriodicalIF":3.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141580021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent advancements in microspheres mediated targeted delivery for therapeutic interventions in osteoarthritis.","authors":"Ayush Rohila, Rahul Shukla","doi":"10.1080/02652048.2024.2373723","DOIUrl":"10.1080/02652048.2024.2373723","url":null,"abstract":"<p><p>Osteoarthritis (OA), affecting around 240 million people globally is a major threat. Currently, available drugs only treat the symptoms of OA; they cannot reverse the disease's progression. The delivery of drugs to afflicted joints is challenging because of poor vasculature of articular cartilage results in their less bioavailability and quick elimination from the joints. Recently approved drugs such as KGN and IL-1 receptor antagonists also encounter challenges because of inadequate formulations. Therefore, microspheres could be a potential player for the intervention of OA owing to its excellent physicochemical properties. This review primarily focuses on microspheres of distinct biomaterials acting as cargo for drugs and biologicals via different delivery routes in the effective management of OA. Microspheres can improve the efficacy of therapeutics by targeting strategies at specific body locations. This review also highlights clinical trials conducted in the last few decades.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"434-455"},"PeriodicalIF":3.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141534615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hengameh Dortaj, Ali Mohammad Amani, Lobat Tayebi, Negar Azarpira, Mahtab Ghasemi Toudeshkchouei, Ashraf Hassanpour-Dehnavi, Neda Karami, Milad Abbasi, Atefeh Najafian-Najafabadi, Zeinab Zarei Behjani, Ahmad Vaez
{"title":"Droplet-based microfluidics: an efficient high-throughput portable system for cell encapsulation.","authors":"Hengameh Dortaj, Ali Mohammad Amani, Lobat Tayebi, Negar Azarpira, Mahtab Ghasemi Toudeshkchouei, Ashraf Hassanpour-Dehnavi, Neda Karami, Milad Abbasi, Atefeh Najafian-Najafabadi, Zeinab Zarei Behjani, Ahmad Vaez","doi":"10.1080/02652048.2024.2382744","DOIUrl":"10.1080/02652048.2024.2382744","url":null,"abstract":"<p><p>One of the goals of tissue engineering and regenerative medicine is restoring primary living tissue function by manufacturing a 3D microenvironment. One of the main challenges is protecting implanted non-autologous cells or tissues from the host immune system. Cell encapsulation has emerged as a promising technique for this purpose. It involves entrapping cells in biocompatible and semi-permeable microcarriers made from natural or synthetic polymers that regulate the release of cellular secretions. In recent years, droplet-based microfluidic systems have emerged as powerful tools for cell encapsulation in tissue engineering and regenerative medicine. These systems offer precise control over droplet size, composition, and functionality, allowing for creating of microenvironments that closely mimic native tissue. Droplet-based microfluidic systems have extensive applications in biotechnology, medical diagnosis, and drug discovery. This review summarises the recent developments in droplet-based microfluidic systems and cell encapsulation techniques, as well as their applications, advantages, and challenges in biology and medicine. The integration of these technologies has the potential to revolutionise tissue engineering and regenerative medicine by providing a precise and controlled microenvironment for cell growth and differentiation. By overcoming the immune system's challenges and enabling the release of cellular secretions, these technologies hold great promise for the future of regenerative medicine.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"479-501"},"PeriodicalIF":3.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}