Hitesh Kumar Dewangan, Kamal Shah, Anil Kumar Vadaga, Manisha Veer, Perwez Alam
{"title":"Optimisation and evaluation of long circulating Ru-SLNs carrier for targeting melanoma cells.","authors":"Hitesh Kumar Dewangan, Kamal Shah, Anil Kumar Vadaga, Manisha Veer, Perwez Alam","doi":"10.1080/02652048.2024.2443436","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of study was to prepared and evaluated rutin-loaded solid-lipid-nanoparticles (Ru-SLNs) gel for treatment of melanoma cells. SLNs were prepared by ultrasonication method through optimisation and evaluated their mean-diameter, PDI, zeta-potential, morphology, entrapment-efficiency, drug-loading, interaction by FTIR, in vitro skin permeation, stability, antioxidant/MTT assay and fluorescence microscopic. Further developed Ru-SLNs was incorporated into gel and characterised their physicochemical properties, drug contents, in vitro diffusion, ex vivo permeation and retention studies in human cadaver skin. Optimised Ru-SLNs batch showed 556.4 <b>±</b> 2.6 nm mean-diameter, -21.9 mV zeta-potential, 94.8 ± 04% entrapment-efficiency, 62.3 ± 29% loading, and 86.63% release after 6 hrs. MTT assay showed, Ru-SLNs have 15.37 times more effectiveness against melanoma cells, while fluorescence microscopy confirmed the cellular uptake over time. Gel based Ru-SLNs, have reduction in flux across skin, indicating a sustained release of rutin and higher retention within the deeper epidermis layer. Finally, Ru-SLNs based gel exhibited promising potential and effectively targeting to skin's epidermal layer for melanoma cells.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"1-13"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2024.2443436","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of study was to prepared and evaluated rutin-loaded solid-lipid-nanoparticles (Ru-SLNs) gel for treatment of melanoma cells. SLNs were prepared by ultrasonication method through optimisation and evaluated their mean-diameter, PDI, zeta-potential, morphology, entrapment-efficiency, drug-loading, interaction by FTIR, in vitro skin permeation, stability, antioxidant/MTT assay and fluorescence microscopic. Further developed Ru-SLNs was incorporated into gel and characterised their physicochemical properties, drug contents, in vitro diffusion, ex vivo permeation and retention studies in human cadaver skin. Optimised Ru-SLNs batch showed 556.4 ± 2.6 nm mean-diameter, -21.9 mV zeta-potential, 94.8 ± 04% entrapment-efficiency, 62.3 ± 29% loading, and 86.63% release after 6 hrs. MTT assay showed, Ru-SLNs have 15.37 times more effectiveness against melanoma cells, while fluorescence microscopy confirmed the cellular uptake over time. Gel based Ru-SLNs, have reduction in flux across skin, indicating a sustained release of rutin and higher retention within the deeper epidermis layer. Finally, Ru-SLNs based gel exhibited promising potential and effectively targeting to skin's epidermal layer for melanoma cells.
期刊介绍:
The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation.
The journal covers:
Chemistry of encapsulation materials
Physics of release through the capsule wall and/or desorption from carrier
Techniques of preparation, content and storage
Many uses to which microcapsules are put.