利用人工神经网络和响应面法制备利伐沙班固体脂质纳米颗粒并进行优化。

IF 3 4区 医学 Q2 CHEMISTRY, APPLIED
Journal of microencapsulation Pub Date : 2025-01-01 Epub Date: 2025-01-05 DOI:10.1080/02652048.2024.2437362
Fatemeh Ghorbannejad Nashli, Sareh Aghajanpour, Ali Farmoudeh, Seyed Sajad Hosseini Balef, Meshkat Torkamanian, Alireza Razavi, Hamid Irannejad, Pedram Ebrahimnejad
{"title":"利用人工神经网络和响应面法制备利伐沙班固体脂质纳米颗粒并进行优化。","authors":"Fatemeh Ghorbannejad Nashli, Sareh Aghajanpour, Ali Farmoudeh, Seyed Sajad Hosseini Balef, Meshkat Torkamanian, Alireza Razavi, Hamid Irannejad, Pedram Ebrahimnejad","doi":"10.1080/02652048.2024.2437362","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>This study aimed to improve rivaroxaban delivery by optimising solid lipid nanoparticles (SLN) for minimal mean diameter and maximal entrapment efficiency (EE), enhancing solubility, bioavailability, and the ability to cross the blood-brain barrier.</p><p><strong>Methods: </strong>A central composite design was employed to synthesise 32 SLN formulations. Response surface methodology (RSM) and artificial neural networks (ANN) models predicted mean diameter and EE based on five independent variables.</p><p><strong>Results: </strong>The optimised SLN formulation achieved a mean particle diameter of 159.8 ± 15.2 nm, with a Polydispersity index of 0.46, a zeta potential of -28.8 mV, and an EE of 74.3% ± 5.6%. The ANN model showed superior accuracy for both mean diameter and EE, outperforming the RSM model. Structural integrity and stability were confirmed by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and Fourier-transform infrared spectroscopy (FTIR).</p><p><strong>Conclusion: </strong>The high accuracy of the ANN model highlights its potential in optimising pharmaceutical formulations and improving SLN-based drug delivery systems.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"70-82"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and optimisation of solid lipid nanoparticles of rivaroxaban using artificial neural networks and response surface method.\",\"authors\":\"Fatemeh Ghorbannejad Nashli, Sareh Aghajanpour, Ali Farmoudeh, Seyed Sajad Hosseini Balef, Meshkat Torkamanian, Alireza Razavi, Hamid Irannejad, Pedram Ebrahimnejad\",\"doi\":\"10.1080/02652048.2024.2437362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>This study aimed to improve rivaroxaban delivery by optimising solid lipid nanoparticles (SLN) for minimal mean diameter and maximal entrapment efficiency (EE), enhancing solubility, bioavailability, and the ability to cross the blood-brain barrier.</p><p><strong>Methods: </strong>A central composite design was employed to synthesise 32 SLN formulations. Response surface methodology (RSM) and artificial neural networks (ANN) models predicted mean diameter and EE based on five independent variables.</p><p><strong>Results: </strong>The optimised SLN formulation achieved a mean particle diameter of 159.8 ± 15.2 nm, with a Polydispersity index of 0.46, a zeta potential of -28.8 mV, and an EE of 74.3% ± 5.6%. The ANN model showed superior accuracy for both mean diameter and EE, outperforming the RSM model. Structural integrity and stability were confirmed by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and Fourier-transform infrared spectroscopy (FTIR).</p><p><strong>Conclusion: </strong>The high accuracy of the ANN model highlights its potential in optimising pharmaceutical formulations and improving SLN-based drug delivery systems.</p>\",\"PeriodicalId\":16391,\"journal\":{\"name\":\"Journal of microencapsulation\",\"volume\":\" \",\"pages\":\"70-82\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microencapsulation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/02652048.2024.2437362\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2024.2437362","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究旨在通过优化固体脂质纳米颗粒(SLN)以实现最小平均直径和最大包裹效率(EE)、提高溶解度、生物利用度和穿越血脑屏障的能力来改善利伐沙班的递送。方法:采用中心复合设计,合成32个SLN配方。响应面法(RSM)和人工神经网络(ANN)模型基于5个自变量预测了平均直径和EE。结果:优化后的SLN平均粒径为159.8±15.2 nm,多分散性指数为0.46,zeta电位为-28.8 mV, EE为74.3%±5.6%。人工神经网络模型在平均直径和EE上都表现出更高的精度,优于RSM模型。通过扫描电镜(SEM)、差示扫描量热法(DSC)和傅里叶变换红外光谱(FTIR)证实了结构的完整性和稳定性。结论:人工神经网络模型的高准确性突出了其在优化药物配方和改进基于sln的给药系统方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preparation and optimisation of solid lipid nanoparticles of rivaroxaban using artificial neural networks and response surface method.

Aims: This study aimed to improve rivaroxaban delivery by optimising solid lipid nanoparticles (SLN) for minimal mean diameter and maximal entrapment efficiency (EE), enhancing solubility, bioavailability, and the ability to cross the blood-brain barrier.

Methods: A central composite design was employed to synthesise 32 SLN formulations. Response surface methodology (RSM) and artificial neural networks (ANN) models predicted mean diameter and EE based on five independent variables.

Results: The optimised SLN formulation achieved a mean particle diameter of 159.8 ± 15.2 nm, with a Polydispersity index of 0.46, a zeta potential of -28.8 mV, and an EE of 74.3% ± 5.6%. The ANN model showed superior accuracy for both mean diameter and EE, outperforming the RSM model. Structural integrity and stability were confirmed by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and Fourier-transform infrared spectroscopy (FTIR).

Conclusion: The high accuracy of the ANN model highlights its potential in optimising pharmaceutical formulations and improving SLN-based drug delivery systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of microencapsulation
Journal of microencapsulation 工程技术-工程:化工
CiteScore
6.30
自引率
2.60%
发文量
39
审稿时长
3 months
期刊介绍: The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation. The journal covers: Chemistry of encapsulation materials Physics of release through the capsule wall and/or desorption from carrier Techniques of preparation, content and storage Many uses to which microcapsules are put.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信