Priyadarshi Aparajay, Harishkumar Madhyastha, Shuvadip Bhowmik, Abhimanyu Dev
{"title":"In vitro apoptotic potential and ex vivo permeation analysis of ulipristal acetate loaded niosomes for management of uterine fibroids.","authors":"Priyadarshi Aparajay, Harishkumar Madhyastha, Shuvadip Bhowmik, Abhimanyu Dev","doi":"10.1080/02652048.2025.2507639","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>To develop and optimise a niosomal formulation of ulipristal acetate (UPA) for enhanced cytotoxicity against uterine fibroids.</p><p><strong>Methods: </strong>Quality by Design, thin film hydration, dynamic light scattering, transmission electron microscopy, cytotoxicity assays, flow cytometry, reactive oxygen species (ROS) generation analysis.</p><p><strong>Results: </strong>Optimised UPA-loaded niosomes (UPA-NS) exhibited mean diameter of 170.7 ± 3.46 nm, polydispersity index of 0.23 ± 0.02, zeta potential of -18.2 ± 2.31 mV, encapsulation efficiency of 90.57 ± 3.22%w/w and 10.65 ± 1.64%w/w loading efficiency. UPA-NS showed 89 ± 3.22%w/w drug release at pH 5.5 within 24 hours compared to 36 ± 5.44%w/w at pH 7.4. UPA-NS demonstrated 70% cytotoxicity in HEC-6 cells at 0.5 μg/mL compared to 44% for free UPA. Flow cytometry showed 23% live cells for UPA-NS vs 33% for free UPA after 16 hours. UPA-NS induced higher ROS generation than free UPA.</p><p><strong>Conclusions: </strong>The niosomal formulation enhanced the cytotoxicity and ROS-generating potential of UPA against uterine fibroid cells.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"1-13"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2025.2507639","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: To develop and optimise a niosomal formulation of ulipristal acetate (UPA) for enhanced cytotoxicity against uterine fibroids.
Methods: Quality by Design, thin film hydration, dynamic light scattering, transmission electron microscopy, cytotoxicity assays, flow cytometry, reactive oxygen species (ROS) generation analysis.
Results: Optimised UPA-loaded niosomes (UPA-NS) exhibited mean diameter of 170.7 ± 3.46 nm, polydispersity index of 0.23 ± 0.02, zeta potential of -18.2 ± 2.31 mV, encapsulation efficiency of 90.57 ± 3.22%w/w and 10.65 ± 1.64%w/w loading efficiency. UPA-NS showed 89 ± 3.22%w/w drug release at pH 5.5 within 24 hours compared to 36 ± 5.44%w/w at pH 7.4. UPA-NS demonstrated 70% cytotoxicity in HEC-6 cells at 0.5 μg/mL compared to 44% for free UPA. Flow cytometry showed 23% live cells for UPA-NS vs 33% for free UPA after 16 hours. UPA-NS induced higher ROS generation than free UPA.
Conclusions: The niosomal formulation enhanced the cytotoxicity and ROS-generating potential of UPA against uterine fibroid cells.
期刊介绍:
The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation.
The journal covers:
Chemistry of encapsulation materials
Physics of release through the capsule wall and/or desorption from carrier
Techniques of preparation, content and storage
Many uses to which microcapsules are put.