Pengyu Lu, Meng Zhang, Zhaoyang Chen, QiYao Xu, Min Liu, Fusen Zhao, Xuan Liu, Xindong Wang
{"title":"Salvianolic Acid B Inhibits Myocardial Fibrosis during Diabetic Cardiomyopathy via Suppressing TRPC6 and TGF-β/Smad3 Pathway","authors":"Pengyu Lu, Meng Zhang, Zhaoyang Chen, QiYao Xu, Min Liu, Fusen Zhao, Xuan Liu, Xindong Wang","doi":"10.1155/2024/5525825","DOIUrl":"https://doi.org/10.1155/2024/5525825","url":null,"abstract":"<div>\u0000 <p>Salvianolic acid B (Sal B), the main water-soluble polyphenolic constituent of Danshen, is noted for its anti-inflammatory, antioxidant, and antiapoptotic properties, particularly in cardiovascular protection. However, the mechanisms by which Sal B affects myocardial fibrosis require further investigation. In vivo, we established a diabetic mouse model using a high-fat diet and intraperitoneal streptozotocin (STZ) administration. Mice were then treated with Sal B, the transient receptor potential channel 6 (TRPC6) inducers, or their combination. Upregulation of TRPC6 worsened myocardial pathology, leading to cardiac hypertrophy and collagen fiber deposition. In vitro, transforming growth factor (TGF)-<i>β</i>1 induced transdifferentiation of cardiac fibroblasts into myofibroblasts, creating a myofibroblast cell model. Sal B, TRPC6 inducers, or their combination were administered. TRPC6 upregulation increased procollagen type I C-terminal propeptide (PICP) and procollagen type III N-terminal propeptide (PIIINP) secretion, promoting myofibroblast proliferation and migration. Our study indicates that TRPC6 expression is upregulated in myocardial fibrosis, enhancing TGF-<i>β</i>/Smad3 signaling and promoting collagen I (COL-1) synthesis. Sal B inhibited abnormal TRPC6 expression and TGF-<i>β</i>/Smad3 activation, mitigating these effects. Thus, Sal B alleviates myocardial fibrosis in diabetes by modulating TRPC6 expression and TGF-<i>β</i>/Smad3 signaling pathway.</p>\u0000 </div>","PeriodicalId":15802,"journal":{"name":"Journal of Food Biochemistry","volume":"2024 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5525825","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preservation Potential of Fenugreek Seed and Leaf Extracts in Mayonnaise: Impact on Antioxidant Activity, Peroxide Value, and Sensory Quality","authors":"Izzet Turker, Hilal Isleroglu, R. Pandiselvam","doi":"10.1155/2024/8558239","DOIUrl":"https://doi.org/10.1155/2024/8558239","url":null,"abstract":"<div>\u0000 <p>Fenugreek extracts have remarkable antioxidant properties and can be used as natural preservatives for products containing a large amount of oil, such as mayonnaise. In this study, mayonnaise was enriched with phenolic extracts of fenugreek seeds (FSE) and fenugreek leaves (FLE), and the quality attributes of the enriched mayonnaises were investigated during storage. FSE and FLE were added to mayonnaise at three different levels (0.05, 0.10, and 0.20%), and the samples were stored at 4°C for 12 weeks and at 25°C for 6 weeks. Antioxidant activity, peroxide value, titratable acidity, color change, and microbial and sensory analysis were performed. As a result, enrichment of mayonnaise with FSE and FLE improved its quality properties during storage. The antioxidant activities of the added FSE and FLE samples were preserved ∼87% and ∼47% at 4°C, and 81% and ∼27% at 25°C, respectively. Furthermore, the increase in the peroxide values of the enriched mayonnaise with extracts during storage was less than that of the added synthetic antioxidant (EDTA) samples. The highest total color change (Δ<i>E</i>) was observed for FLE-added samples for all levels of addition. Multifactorial ANOVA showed significant effects (<i>p</i> < 0.05) of type and concentration of additives, storage time, and their interactions on antioxidant activity, peroxide value, titratable acidity, and color change at both storage temperatures (4°C and 25°C). <i>R</i><sup>2</sup> and adj-<i>R</i><sup>2</sup> values indicated highly accurate models for all parameters. The addition of FLE and FSE at the highest level (0.20%) prevented the growth of total aerobic mesophilic bacteria by 2.1 and 3.2 logs and the growth of total yeast/mold by 1.0 and 1.3 logs at 25°C, respectively. Sensory attributes (color, odor, taste, texture, and general acceptance) of the mayonnaises added to FSE and FLE had higher scores than the control sample at the end of storage.</p>\u0000 </div>","PeriodicalId":15802,"journal":{"name":"Journal of Food Biochemistry","volume":"2024 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8558239","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advancements in Fluorescence Sensing: Carbon Quantum Dots for Acrylamide Detection in Food","authors":"Nikhil Sharma, Sweezee Thakur, Aarti Bains, Kandi Sridhar, Sanju Bala Dhull, Sandeep Janghu, Minaxi Sharma, Sandip Patil, Prince Chawla","doi":"10.1155/2024/5045531","DOIUrl":"https://doi.org/10.1155/2024/5045531","url":null,"abstract":"<div>\u0000 <p>Acrylamide is a hazardous chemical mainly synthesized during the thermal processing of foods representing a significant concern within the broader issue of food contaminants and their impact on public health. Acrylamide can be absorbed by the human body through dietary intake, respiration, dermal contact, and mucosa. The metabolic conversion of acrylamide into mercapturic acid metabolites and glycidamide results in several adverse and toxic effects. Therefore, this review explores the formation, toxicity, and metabolism of acrylamide. Hence, it is crucial to detect and ensure product quality via risk evaluation. Traditional analytical techniques for acrylamide detection often require expensive instrumentation and complex sample preparation, prompting the exploration of alternative, cost-effective, sustainable methods. Here, we propose the utilization of carbon quantum dots (CQDs) synthesized through green approaches as a novel solution. CQDs display their immense potential for diverse applications due to their valuable properties such as biocompatibility, photocatalysis, and strong fluorescence. This review highlights the distinct potential of CQDs as a fluorescence probe for detecting acrylamide, showcasing their efficacy in addressing food safety concerns. In addition, various extraction and purification techniques for acrylamide such as QuEChERS, solid phase extraction, Carrez clarification, and dispersive liquid-liquid microextraction are comprehensively reviewed. QuEChERS is regarded as a most promising technique for the extraction of acrylamide owing to its cost-effective, rapid, and higher recovery rates.</p>\u0000 </div>","PeriodicalId":15802,"journal":{"name":"Journal of Food Biochemistry","volume":"2024 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5045531","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142316991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Geographical Discrimination of Hulless Barley Based on Quality Traits, Volatiles, and Metabolomic Profiling Combined with Chemometrics","authors":"Lijing Liang, Junjie Jia, Ling Li, Liqiang Zhang, Long Ma, Songtao Wang, Zongyun Feng","doi":"10.1155/2024/1424094","DOIUrl":"https://doi.org/10.1155/2024/1424094","url":null,"abstract":"<div>\u0000 <p>The geographical traceability of food products is crucial for quality assurance and consumer confidence. The chemical profile and taste quality of hulless barley vary considerably across different production areas, making the determination of its geographical origin and the identification of relevant geographical biomarkers essential. In this study, the quality traits, volatile compounds, and metabolites of 20 hulless barley cultivars from four primary producing areas were investigated. Multivariate analysis showed that there were significant differences in hulless barley from different regions (<i>p</i> < 0.05). The orthogonal partial least squares discriminant analysis (OPLS-DA) models exhibited good performance in terms of origin discrimination, identifying 27 volatiles and 86 metabolites that could be used as candidate markers for separation. Redundancy analysis (RDA) and correlation matrix analysis revealed that numerous candidate markers were closely related to soil chemical and climate parameters. The results demonstrate that quality traits, volatile compounds, and metabolites can be used to effectively distinguish the geographical origins of hulless barley, thereby confirming that there is a robust link between metabolite expression and environmental factors. This work highlights that chemical profiling, combined with chemometric techniques (the application of statistical and mathematical methods to chemical data), provides a valuable tool for the geographical discrimination of hulless barley.</p>\u0000 </div>","PeriodicalId":15802,"journal":{"name":"Journal of Food Biochemistry","volume":"2024 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/1424094","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142316990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruihan Zhang, Xiaoxiao Guo, Jiajie Hu, Jing Chen, Yan Zheng, Siwei Peng, Bin Zhang, Shanggui Deng, HongLi Yang
{"title":"The Use of Zein and Arabic Gum to Produce Cinnamon Bark Oil-Loaded Pickering Emulsion with Improved Stability, Antioxidant, and Antibacterial Properties","authors":"Ruihan Zhang, Xiaoxiao Guo, Jiajie Hu, Jing Chen, Yan Zheng, Siwei Peng, Bin Zhang, Shanggui Deng, HongLi Yang","doi":"10.1155/2024/8603356","DOIUrl":"https://doi.org/10.1155/2024/8603356","url":null,"abstract":"<div>\u0000 <p>Cinnamon bark oil (CBO) is a natural plant bioactive molecule with antioxidant and antimicrobial activities because of its chemical instability and poor solubility in water, which limits its industrial applications. Herein, CBO-loaded Pickering emulsion was produced using zein, the stabilizer, and arabic gum (AG) was used to modify the emulsifying ability of CBO. The stability, chromatic aberration, pH, particle size, polydispersity index (PDI), and zeta (<i>ζ</i>) potential of the CBO-loaded Pickering emulsion were investigated. The results showed that the Zein-AG-CBO Pickering emulsion exhibited better stability at an added AG concentration of 0.8% (w/v) than the free CBO. The CBO-loaded Pickering emulsion retained its antioxidant and antimicrobial capacity and exhibited higher functional potential than the free CBO. The findings demonstrated the potential of Zein-0.8%AG-CBO Pickering emulsion as a kind of promising alternative for the delivery of antimicrobial essential oils in the food, active packaging material, and other related industries.</p>\u0000 </div>","PeriodicalId":15802,"journal":{"name":"Journal of Food Biochemistry","volume":"2024 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8603356","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhao Yiwen, Niu Lubin, Zhu Ruifang, Cao Yan, Han Shifan
{"title":"Phytochemicals in Chronic Noncommunicable Diseases: A Bibliometric Study","authors":"Zhao Yiwen, Niu Lubin, Zhu Ruifang, Cao Yan, Han Shifan","doi":"10.1155/2024/5294512","DOIUrl":"https://doi.org/10.1155/2024/5294512","url":null,"abstract":"<div>\u0000 <p><i>Background</i>. Phytochemicals are compounds that are naturally found in plants and are known to have various health benefits. However, phytochemicals are structurally complex, inherently unstable, and have low bioavailability. Unfortunately, research on phytochemicals lags behind that of essential nutrients. This paper focuses on a bibliometric analysis to understand citation patterns in phytochemical research related to chronic diseases. It examines the current state of research, research focal points, and anticipated trends in the field. <i>Methods</i>. We analyzed published literature on phytochemicals and chronic diseases using the Web of Science database. Our search included only English-language publications until April 1, 2023. Visual Metrics software was used to examine data on countries, institutions, authors, journals, and citations. <i>Results</i>. For this study, a total of 2,297 articles were retrieved from 2008 to the present, with a significant increase in citations starting in 2017. China was found to be the leading country in paper production, while the United States had the highest H-index, placing both at the forefront of research in this field. King Saud University published the most, and Liu RH emerged as the most influential author. The analysis showed limited collaboration between institutions across different countries. Molecules were the primary source for phytochemical-related papers. The top 20 keywords highlighted flavonoids and their association with cardiovascular diseases, indicating them as prominent themes in recent phytochemical research with the potential to remain relevant. <i>Conclusions</i>. The study highlights the increasing interest in phytochemical research related to chronic diseases. It provides a thorough review and analysis of the present situation, the latest research topics, and academic trends in this field. This information is precious for researchers and healthcare professionals. It helps them to comprehend significant literature and keep up-to-date with the latest advancements in the field, eventually leading to progress in this field.</p>\u0000 </div>","PeriodicalId":15802,"journal":{"name":"Journal of Food Biochemistry","volume":"2024 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5294512","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jingna Gu, Jiao Zhao, Lingzhi Ren, Xiaoting Li, Hailiang Ma, Xiaoqi Huang, Yang Yu, Yongling Long
{"title":"Structural Characterization and Gut Microbiota Modulation of CDP-2 Polysaccharide Extracted from Cistanche deserticola Ma","authors":"Jingna Gu, Jiao Zhao, Lingzhi Ren, Xiaoting Li, Hailiang Ma, Xiaoqi Huang, Yang Yu, Yongling Long","doi":"10.1155/2024/4437321","DOIUrl":"https://doi.org/10.1155/2024/4437321","url":null,"abstract":"<div>\u0000 <p><i>Cistanche deserticola Ma</i> (CD) has historically been recognized for its dual role as a culinary and therapeutic parasitic herb, offering noteworthy medicinal and nutritional properties. Polysaccharides extracted and purified from CD have received an increasing great quantity of research attention due to their various pharmacological activities. In this study, using ultrasound combined with complex enzyme extraction, ethanol precipitation, DEAE-cellulose column (26 mm × 400 mm) chromatography, and Sephacryl S-400 HR column (26 mm × 1000 mm) chromatography, the heteropolysaccharides polysaccharide, named CDP-2, was separated and purified from the CDP. CDP-2 was a molecular weight of 65.60 kDa and consisted of Ara, Gal, Glc, Rha, Xyl, Man, Fuc, Gal-UA, Glc-UA, Man-UA, Gul-UA at a molar ratio of 39.05 : 23.17 : 16.29 : 11.10 : 1.79 : 1.22 : 0.47 : 3.28 : 2.48 : 0.62 : 0.55. The backbones of CDP-2 contained ⟶4)-<i>α</i>-D-Glcp-(1⟶, ⟶3,6)-<i>β</i>-D-Galp-(1⟶, and ⟶5)-<i>α</i>-L-Araf-(1⟶, with a minor component of ⟶3)-<i>β</i>-D-Galp-(1⟶. The side chains are mainly formed by <i>α</i>-L-Araf-(1⟶ or <i>α</i>-L-Rhap-(1⟶ linked to the O-6 position of residue ⟶3,6)-<i>β</i>-D-Galp-(1⟶. Biological assays revealed CDP-2’s efficacy in augmenting the proliferation of specific Bacteroides strains. Additionally, it was observed to facilitate the production of short-chain fatty acids by these bacterial strains. Cumulatively, these insights underscore the CDP-2’s prospective role in bolstering gastrointestinal health via fostering Bacteroides colonization.</p>\u0000 </div>","PeriodicalId":15802,"journal":{"name":"Journal of Food Biochemistry","volume":"2024 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/4437321","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Anti-Inflammatory and Microbiota-Regulating Property of Deficiency Tonic Medicines in Edible Traditional Chinese Medicine: A Promising Therapy for Depressive Disorder","authors":"Siyu Ren, Peilin Qin, Gang Wang, Jian Yang","doi":"10.1155/2024/4062632","DOIUrl":"https://doi.org/10.1155/2024/4062632","url":null,"abstract":"<div>\u0000 <p>Depression has become the leading cause of disability worldwide. Conventional serotonergic antidepressants fail to meet anticipated outcomes and increase the risk of drug dependency and side effects. Consequently, the significance of diet and nutrition in the prevention and management of depression and anxiety has increasingly received attention. Many years of clinical practice have shown that edible traditional Chinese medicines can relieve depression through their anti-inflammatory properties, potentially acting as a nutritional remedy for depression with a higher acceptance rate and safety. In this review, we elucidated how deficiency tonic medicines in edible traditional Chinese medicines and their ingredients modulate the immune response and gut microbiota to alleviate depression. This article can offer new insights into the antidepressant effect of daily dietary treatments.</p>\u0000 </div>","PeriodicalId":15802,"journal":{"name":"Journal of Food Biochemistry","volume":"2024 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/4062632","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaopeng Guo, Xuee Li, Shengli Zhang, Shuhua Zhu, Rong Guo, Yue Gao, Yonggang Wang, Xiaofeng Liu, Yan Liu, Hao Shi
{"title":"A Joint Analysis of Metabolomics, Network Pharmacology, and Molecular Docking Reveals the Efficacy Patterns in Various Medicinal Segments of Angelica sinensis (Oliv.) Diels Root","authors":"Xiaopeng Guo, Xuee Li, Shengli Zhang, Shuhua Zhu, Rong Guo, Yue Gao, Yonggang Wang, Xiaofeng Liu, Yan Liu, Hao Shi","doi":"10.1155/2024/7377627","DOIUrl":"https://doi.org/10.1155/2024/7377627","url":null,"abstract":"<div>\u0000 <p><i>Angelica sinensis</i> (Oliv.) Diels root (ASR) is a medicinal and edible traditional Chinese herb medicine. Understanding the varying efficacies in different ASR segments and their associated pharmacological mechanisms at the metabolome level has been a largely unexplored research area. This study integrates metabolomics, network pharmacology, and molecular docking to investigate the characteristics and mechanisms underlying hemostasis, blood enrichment, and blood circulation promotion in distinct ASR medicinal segments. The distinguishable metabolic spectra were visually presented for the head (ASRH), body (ASRB), and tail (ASRT) in ASR, highlighting the dominant metabolites in each. Furthermore, a network linking components, targeted proteins, signaling pathways, and diseases was constructed. The combined analysis of metabolomics and network pharmacology confirms that ASRT primarily enhances blood circulation, whereas ASRH and ASRB lean toward hemostasis and blood enrichment. The dominant ingredients of ASRT mainly influence signaling pathways of calcium, PI3K-Akt, and arachidonic acid metabolism by modulating targeted proteins like EGFR, SRC, AKT1, and HSP90AA1, thus enhancing hemodynamics. In contrast, the dominant ingredients of ASRH and ASRB regulate PI3K-Akt, IL-17, and JAK-STAT signaling pathways via proteins, such as CTNNB1, AKT1, SRC, and EP300, playing a role in hemostasis and blood enrichment. These results were subsequently validated by molecular docking. This study innovatively combines metabolomics, network pharmacology, and molecular docking to preliminarily reveal the mechanisms governing hemostasis, blood enrichment, and blood circulation improvement regulated through multiple components, targeted proteins, and pathways in different ASR segments. These findings offer valuable insights for future investigations into the efficacies of distinct ASR segments.</p>\u0000 </div>","PeriodicalId":15802,"journal":{"name":"Journal of Food Biochemistry","volume":"2024 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7377627","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142244513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hao Shiqi, Du Jialu, Sun Xueyin, Hu Guanhua, Sun Erke, Li Xiaotong, Jin Ye, Zhao Lihua
{"title":"Characteristic Flavor Analysis of Inner Mongolia Air-Dried Meat and the Impact of Vacuum Tumbling Curing on Flavor","authors":"Hao Shiqi, Du Jialu, Sun Xueyin, Hu Guanhua, Sun Erke, Li Xiaotong, Jin Ye, Zhao Lihua","doi":"10.1155/2024/4077505","DOIUrl":"https://doi.org/10.1155/2024/4077505","url":null,"abstract":"<div>\u0000 <p>Air-dried beef is a traditional specialty dried meat product that has a rich history in Inner Mongolia. In-depth understanding of the characteristic flavor substances of air-dried meat in different regions can help branding of traditional air-dried meat products and sustainable development of the air-dried meat industry in Inner Mongolia. This study aims to investigate the characteristic flavors of air-dried beef from various regions of Inner Mongolia (Ordos, Xinlingol, and Chifeng) by using electronic nose and GC-MS combined with ROAV value and explore the impact of the vacuum tumbling curing process on the flavor of air-dried meat. The samples from each region were found to contain characteristic flavor substances such as alcohols, aldehydes, hydrocarbons, and oxygenates. There are five characteristic flavor substances unique to the Ordos region: 3-dodecanol (5.938), 4-methyl-5-decanol (32.686), 2,4-dimethyl-2-pentanol (4.139), methylheptenone (67.445), and 3-ethyl-2,5-dimethylpyrazine (4.256); three characteristic flavor substances unique to the Xilingol region: isovaleraldehyde (68.917), ethyl phenylacetate (3.746), and thymol (2.091); and two characteristic flavor substances unique to the Chifeng region: 2-heptanol (3.984) and 6-methyl-2-heptanone (6.191). Vacuum tumbling curing not only improved the pH (6.35) and <i>L</i><sup>∗</sup> value (33.74) of air-dried meat but also increased the variety of flavor substances characteristic of air-dried meat, including trans-2-decenol (2.989), isopentanol (0.585), trans-2-nonenal (2.937), methyl decyl ketone (4.836), phenylacetic acid (4.262), and benzoic acid (0.554). In conclusion, the addition of vacuum tumbling curing process in the industrial production of air-dried beef products can increase the curing efficiency and improve the flavor of air-dried beef products.</p>\u0000 </div>","PeriodicalId":15802,"journal":{"name":"Journal of Food Biochemistry","volume":"2024 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/4077505","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}