Journal of Differential Equations最新文献

筛选
英文 中文
Normalized solutions for a nonlinear Dirac equation 非线性狄拉克方程的归一化解
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2024-09-23 DOI: 10.1016/j.jde.2024.09.029
Vittorio Coti Zelati , Margherita Nolasco
{"title":"Normalized solutions for a nonlinear Dirac equation","authors":"Vittorio Coti Zelati ,&nbsp;Margherita Nolasco","doi":"10.1016/j.jde.2024.09.029","DOIUrl":"10.1016/j.jde.2024.09.029","url":null,"abstract":"<div><div>We prove the existence of a normalized, stationary solution <span><math><mi>ψ</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>→</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> with frequency <span><math><mi>ω</mi><mo>&gt;</mo><mn>0</mn></math></span> of the nonlinear Dirac equation. The result covers the case in which the nonlinearity is the gradient of a function of the form<span><span><span><math><mi>F</mi><mo>(</mo><mi>Ψ</mi><mo>)</mo><mo>=</mo><mi>a</mi><mo>|</mo><mo>(</mo><mi>Ψ</mi><mo>,</mo><msup><mrow><mi>γ</mi></mrow><mrow><mn>0</mn></mrow></msup><mi>Ψ</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>+</mo><mi>b</mi><mo>|</mo><mo>(</mo><mi>Ψ</mi><mo>,</mo><msup><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msup><msup><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>Ψ</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span></span></span> with <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>2</mn><mo>,</mo><mfrac><mrow><mn>8</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>]</mo></math></span>, <span><math><mi>b</mi><mo>≥</mo><mn>0</mn></math></span> and <span><math><mi>a</mi><mo>&gt;</mo><mn>0</mn></math></span> sufficiently small. Here <span><math><msup><mrow><mi>γ</mi></mrow><mrow><mi>i</mi></mrow></msup></math></span>, <span><math><mi>i</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>3</mn></math></span> are the <span><math><mn>4</mn><mo>×</mo><mn>4</mn></math></span> Dirac's matrices.</div><div>We find the solution as a critical point of a suitable functional restricted to the unit sphere in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, and <em>ω</em> turns out to be the corresponding Lagrange multiplier.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022039624006144/pdfft?md5=cb690464016ef3752322a3f835e48f7c&pid=1-s2.0-S0022039624006144-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The isochronal phase of stochastic PDE and integral equations: Metastability and other properties 随机 PDE 和积分方程的等时相:可代谢性及其他特性
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2024-09-23 DOI: 10.1016/j.jde.2024.09.002
Zachary P. Adams , James MacLaurin
{"title":"The isochronal phase of stochastic PDE and integral equations: Metastability and other properties","authors":"Zachary P. Adams ,&nbsp;James MacLaurin","doi":"10.1016/j.jde.2024.09.002","DOIUrl":"10.1016/j.jde.2024.09.002","url":null,"abstract":"<div><div>We study the dynamics of waves, oscillations, and other spatio-temporal patterns in stochastic evolution systems, including SPDE and stochastic integral equations. Representing a given pattern as a smooth, stable invariant manifold of the deterministic dynamics, we reduce the stochastic dynamics to a finite dimensional SDE on this manifold using the isochronal phase. The isochronal phase is defined by mapping a neighborhood of the manifold onto the manifold itself, analogous to the isochronal phase defined for finite-dimensional oscillators by A.T. Winfree and J. Guckenheimer. We then determine a probability measure that indicates the average position of the stochastic perturbation of the pattern/wave as it wanders over the manifold. It is proved that this probability measure is accurate on time-scales greater than <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>σ</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo>)</mo></math></span>, but less than <span><math><mi>O</mi><mo>(</mo><mi>exp</mi><mo>⁡</mo><mo>(</mo><mi>C</mi><msup><mrow><mi>σ</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo>)</mo><mo>)</mo></math></span>, where <span><math><mi>σ</mi><mo>≪</mo><mn>1</mn></math></span> is the amplitude of the stochastic perturbation. Moreover, using this measure, we determine the expected velocity of the difference between the deterministic and stochastic motion on the manifold.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The focusing complex mKdV equation with nonzero background: Large N-order asymptotics of multi-rational solitons and related Painlevé-III hierarchy 非零背景的聚焦复数 mKdV 方程:多有理孤子的大 N 阶渐近和相关的 Painlevé-III 层次结构
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2024-09-23 DOI: 10.1016/j.jde.2024.09.038
Weifang Weng , Guoqiang Zhang , Zhenya Yan
{"title":"The focusing complex mKdV equation with nonzero background: Large N-order asymptotics of multi-rational solitons and related Painlevé-III hierarchy","authors":"Weifang Weng ,&nbsp;Guoqiang Zhang ,&nbsp;Zhenya Yan","doi":"10.1016/j.jde.2024.09.038","DOIUrl":"10.1016/j.jde.2024.09.038","url":null,"abstract":"<div><div>In this paper, we investigate the large-order asymptotics of multi-rational solitons of the focusing complex modified Korteweg-de Vries (c-mKdV) equation with nonzero background via the Riemann-Hilbert problems. First, based on the Lax pair, inverse scattering transform, and a series of deformations, we construct a multi-rational soliton of the c-mKdV equation via a solvable Riemann-Hilbert problem (RHP). Then, through a scale transformation, we construct a RHP corresponding to the limit function which is a new solution of the c-mKdV equation in the rescaled variables <span><math><mi>X</mi><mo>,</mo><mspace></mspace><mi>T</mi></math></span>, and prove the existence and uniqueness of the RHP's solution. Moreover, we also find that the limit function satisfies the ordinary differential equations (ODEs) with respect to space <em>X</em> and time <em>T</em>, respectively. The ODEs with respect to space <em>X</em> are identified with certain members of the Painlevé-III hierarchy. We study the large <em>X</em> and transitional asymptotic behaviors of near-field limit solutions, and we provide some part results for the case of large <em>T</em>. These results will be useful to understand and apply the large-order rational solitons in the nonlinear wave equations.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142310595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotic behavior for the fast diffusion equation with absorption and singularity 具有吸收和奇异性的快速扩散方程的渐近行为
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2024-09-20 DOI: 10.1016/j.jde.2024.09.026
Changping Xie , Shaomei Fang , Ming Mei , Yuming Qin
{"title":"Asymptotic behavior for the fast diffusion equation with absorption and singularity","authors":"Changping Xie ,&nbsp;Shaomei Fang ,&nbsp;Ming Mei ,&nbsp;Yuming Qin","doi":"10.1016/j.jde.2024.09.026","DOIUrl":"10.1016/j.jde.2024.09.026","url":null,"abstract":"<div><p>This paper is concerned with the weak solution for the fast diffusion equation with absorption and singularity in the form of <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>△</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>. We first prove the existence and decay estimate of weak solution when the fast diffusion index satisfies <span><math><mn>0</mn><mo>&lt;</mo><mi>m</mi><mo>&lt;</mo><mn>1</mn></math></span> and the absorption index is <span><math><mi>p</mi><mo>&gt;</mo><mn>1</mn></math></span>. Then we show the asymptotic convergence of weak solution to the corresponding Barenblatt solution for <span><math><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac><mo>&lt;</mo><mi>m</mi><mo>&lt;</mo><mn>1</mn></math></span> and <span><math><mi>p</mi><mo>&gt;</mo><mi>m</mi><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></mfrac></math></span> via the entropy dissipation method combining the generalized Shannon's inequality and Csiszár-Kullback inequality. The singularity of spatial diffusion causes us the technical challenges for the asymptotic behavior of weak solution.</p></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence, uniqueness and interior regularity of viscosity solutions for a class of Monge-Ampère type equations 一类 Monge-Ampère 型方程的粘性解的存在性、唯一性和内部正则性
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2024-09-20 DOI: 10.1016/j.jde.2024.09.024
Mengni Li , You Li
{"title":"Existence, uniqueness and interior regularity of viscosity solutions for a class of Monge-Ampère type equations","authors":"Mengni Li ,&nbsp;You Li","doi":"10.1016/j.jde.2024.09.024","DOIUrl":"10.1016/j.jde.2024.09.024","url":null,"abstract":"<div><p>The Monge-Ampère type equations over bounded convex domains arise in a host of geometric applications. In this paper, we focus on the Dirichlet problem for a class of Monge-Ampère type equations, which can be degenerate or singular near the boundary of convex domains. Viscosity subsolutions and viscosity supersolutions to the problem can be constructed via comparison principle. Finally, we demonstrate the existence, uniqueness and a series of interior regularities (including <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msup></math></span> with <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></math></span>, <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>μ</mi></mrow></msup></math></span> with <span><math><mi>μ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, and <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>) of the viscosity solution to the problem.</p></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved blow-up criteria for some Camassa-Holm type equations 一些卡马萨-霍姆型方程的改进炸毁标准
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2024-09-19 DOI: 10.1016/j.jde.2024.09.022
Rudong Zheng
{"title":"Improved blow-up criteria for some Camassa-Holm type equations","authors":"Rudong Zheng","doi":"10.1016/j.jde.2024.09.022","DOIUrl":"10.1016/j.jde.2024.09.022","url":null,"abstract":"<div><p>We study the blow-up phenomena for some integrable Camassa-Holm type equations on the line. For the two-component Camassa-Holm system, we give a sufficient condition on the initial data that leads to a blow-up. For the Degasperis-Procesi equation, we establish a local-in-space blow-up criterion which improves considerably the early criterion based on the sign-changing momentum. Besides, we obtain some new blow-up criteria for the Novikov equation and the modified Camassa-Holm equation.</p></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uniform-in-time stability and continuous transition of the time-discrete infinite Kuramoto model 时间离散无限仓本模型的均匀时间稳定性和连续转换
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2024-09-19 DOI: 10.1016/j.jde.2024.09.021
Seung-Yeal Ha , Eun Taek Lee , Wook Yoon
{"title":"Uniform-in-time stability and continuous transition of the time-discrete infinite Kuramoto model","authors":"Seung-Yeal Ha ,&nbsp;Eun Taek Lee ,&nbsp;Wook Yoon","doi":"10.1016/j.jde.2024.09.021","DOIUrl":"10.1016/j.jde.2024.09.021","url":null,"abstract":"<div><p>We study a continuous transition from the discrete infinite Kuramoto model to the continuous counterpart in a whole time interval. The discrete infinite Kuramoto model corresponds to the discretization of the infinite Kuramoto model <span><span>[18]</span></span> via the first-order Euler discretization algorithm. For the proposed discrete infinite Kuramoto model, we study the emergent dynamics and uniform (-in-time) stability with respect to initial data under a suitable framework which is formulated in terms of system parameters and initial data. For a homogeneous ensemble with the same natural frequencies, we identify sufficient conditions for the existence of “quasi-stationary state” and complete synchronization. In contrast, for a heterogeneous ensemble, we also provide a weak emergent dynamics, namely “practical synchronization”. For the continuous transition in a zero time-step limit, we provide an improved truncation error estimate compared to the error estimate which can be obtained from the general theory for first-order discretized model using the uniform stability and emergent dynamics.</p></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlocal Hénon type problem with nonlinearities involving slightly subcritical growth 涉及轻微次临界增长的非线性非局部赫农型问题
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2024-09-19 DOI: 10.1016/j.jde.2024.09.016
Imene Bendahou , Zied Khemiri , Fethi Mahmoudi
{"title":"Nonlocal Hénon type problem with nonlinearities involving slightly subcritical growth","authors":"Imene Bendahou ,&nbsp;Zied Khemiri ,&nbsp;Fethi Mahmoudi","doi":"10.1016/j.jde.2024.09.016","DOIUrl":"10.1016/j.jde.2024.09.016","url":null,"abstract":"&lt;div&gt;&lt;p&gt;In this paper, we study the existence of solutions for the following nonlocal superlinear elliptic problem&lt;span&gt;&lt;span&gt;&lt;span&gt;(0.1)&lt;/span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;ε&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mtext&gt;in &lt;/mtext&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mtext&gt;in &lt;/mtext&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;﹨&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; where &lt;span&gt;&lt;math&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/math&gt;&lt;/span&gt; is the Sobolev critical exponent, &lt;span&gt;&lt;math&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;⊂&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; is a smooth bounded domain with Lipschitz boundary, &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; is the fractional Laplace operator and &lt;span&gt;&lt;math&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;‾&lt;/mo&gt;&lt;/mover&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is a bounded positive continuous function. We assume that there exists a nondegenerate critical point &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;ξ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mo&gt;∂&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; of the restriction of &lt;em&gt;β&lt;/em&gt; to the boundary ∂Ω such that&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;∇&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;ξ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;⋅&lt;/mo&gt;&lt;mi&gt;η&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;ξ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; Given any integer &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, we show that for &lt;span&gt;&lt;math&gt;&lt;mi&gt;ε&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; small enough, problem &lt;span&gt;&lt;span&gt;(0.1)&lt;/span&gt;&lt;/span&gt; has a positive solution, which is a sum of &lt;em&gt;k&lt;/em&gt; bubbles which concentrate at &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;ξ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; as &lt;em&gt;ε&lt;/em&gt; tends to zero. Also, we prove the existence of nodal (sign changing) solution whose shape resembles a sum of a positive bubble and a negative bubble near the point &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;ξ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⁎&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;. This work can be seen as a nonloca","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A stochastic mosquito population suppression model based on incomplete cytoplasmic incompatibility and time switching 基于不完全细胞质不相容和时间转换的随机蚊虫种群抑制模型
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2024-09-19 DOI: 10.1016/j.jde.2024.09.017
Rong Yan , Wenjuan Guo , Jianshe Yu
{"title":"A stochastic mosquito population suppression model based on incomplete cytoplasmic incompatibility and time switching","authors":"Rong Yan ,&nbsp;Wenjuan Guo ,&nbsp;Jianshe Yu","doi":"10.1016/j.jde.2024.09.017","DOIUrl":"10.1016/j.jde.2024.09.017","url":null,"abstract":"<div><p>In this paper, we establish and study a stochastic mosquito population suppression model incorporating the release of <em>Wolbachia</em>-infected males and time switching, where stochastic noises are given by independent standard Brownian motions. By combining the actual mosquito control strategy in Guangzhou, we assume that the waiting release period <em>T</em> between two consecutive releases of <em>Wolbachia</em>-infected males is less than the sexually active lifespan <span><math><mover><mrow><mi>T</mi></mrow><mo>‾</mo></mover></math></span> of them. The existence and uniqueness of global positive solutions and stochastically ultimate boundedness for the stochastic model are obtained. Some sufficient conditions for the extinction and the existence of stochastic non-trivial periodic solutions are established. Furthermore, we assume that the release function is a general periodic function and some stochastic dynamical behaviors are obtained. Numerical examples are presented to illustrate the theoretical results.</p></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wasserstein convergence rate of invariant measures for stochastic Schrödinger delay lattice systems 随机薛定谔延迟晶格系统不变量的瓦瑟斯坦收敛率
IF 2.4 2区 数学
Journal of Differential Equations Pub Date : 2024-09-19 DOI: 10.1016/j.jde.2024.08.065
Zhang Chen , Dandan Yang , Shitao Zhong
{"title":"Wasserstein convergence rate of invariant measures for stochastic Schrödinger delay lattice systems","authors":"Zhang Chen ,&nbsp;Dandan Yang ,&nbsp;Shitao Zhong","doi":"10.1016/j.jde.2024.08.065","DOIUrl":"10.1016/j.jde.2024.08.065","url":null,"abstract":"<div><p>This paper is concerned with the convergence of invariant measures in the Wasserstein sense for the stochastic Schrödinger delay lattice systems as delay parameter <em>ρ</em> or parameter <em>β</em> approaches zero. Through <em>p</em>th-order moment estimates of solutions to systems, as well as the Hölder continuity estimates of solutions with respect to time, we obtain the convergence of solutions about initial data and the above parameters. Then together with high-order moment estimates of invariant measures, we prove that the unique invariant measure of such delay lattice system converges to the invariant measure of limiting system in the Wasserstein sense as delay parameter <em>ρ</em> or parameter <em>β</em> approaches zero, and the corresponding convergence rate is also obtained.</p></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信