尖锐锋面的渐近稳定性:分析与严格计算

IF 2.4 2区 数学 Q1 MATHEMATICS
Blake Barker , Jared C. Bronski , Vera Mikyoung Hur , Zhao Yang
{"title":"尖锐锋面的渐近稳定性:分析与严格计算","authors":"Blake Barker ,&nbsp;Jared C. Bronski ,&nbsp;Vera Mikyoung Hur ,&nbsp;Zhao Yang","doi":"10.1016/j.jde.2025.113550","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the stability of traveling front solutions to nonlinear diffusive-dispersive equations of Burgers type, with a primary focus on the Korteweg-de Vries–Burgers (KdVB) equation, although our analytical findings extend more broadly. Manipulating the temporal modulation of the translation parameter of the front and employing the energy method, we establish asymptotic, nonlinear, and orbital stability, provided that an auxiliary Schrödinger equation possesses precisely one bound state. Notably, our result is independent of the monotonicity of the profile and does not necessitate the initial condition to be close to the front. We identify a sufficient condition for stability based on a functional that characterizes the ‘width’ of the traveling wave profile. Analytical verification for the KdVB equation confirms that this sufficient condition holds for the relative dispersion parameter within an open interval <span><math><mo>⊃</mo><mo>[</mo><mo>−</mo><mn>0.25</mn><mo>,</mo><mn>0.25</mn><mo>]</mo></math></span>, encompassing all monotone profiles. Utilizing validated numerics or rigorous computation, we present a computer-assisted proof demonstrating that the stability condition itself holds for parameter values within the interval <span><math><mo>[</mo><mn>0.2533</mn><mo>,</mo><mn>3.9</mn><mo>]</mo></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"444 ","pages":"Article 113550"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic stability of sharp fronts: Analysis and rigorous computation\",\"authors\":\"Blake Barker ,&nbsp;Jared C. Bronski ,&nbsp;Vera Mikyoung Hur ,&nbsp;Zhao Yang\",\"doi\":\"10.1016/j.jde.2025.113550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the stability of traveling front solutions to nonlinear diffusive-dispersive equations of Burgers type, with a primary focus on the Korteweg-de Vries–Burgers (KdVB) equation, although our analytical findings extend more broadly. Manipulating the temporal modulation of the translation parameter of the front and employing the energy method, we establish asymptotic, nonlinear, and orbital stability, provided that an auxiliary Schrödinger equation possesses precisely one bound state. Notably, our result is independent of the monotonicity of the profile and does not necessitate the initial condition to be close to the front. We identify a sufficient condition for stability based on a functional that characterizes the ‘width’ of the traveling wave profile. Analytical verification for the KdVB equation confirms that this sufficient condition holds for the relative dispersion parameter within an open interval <span><math><mo>⊃</mo><mo>[</mo><mo>−</mo><mn>0.25</mn><mo>,</mo><mn>0.25</mn><mo>]</mo></math></span>, encompassing all monotone profiles. Utilizing validated numerics or rigorous computation, we present a computer-assisted proof demonstrating that the stability condition itself holds for parameter values within the interval <span><math><mo>[</mo><mn>0.2533</mn><mo>,</mo><mn>3.9</mn><mo>]</mo></math></span>.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"444 \",\"pages\":\"Article 113550\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625005777\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005777","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了Burgers型非线性扩散-色散方程的行前解的稳定性,主要关注Korteweg-de Vries-Burgers (KdVB)方程,尽管我们的分析结果扩展得更广泛。利用前移参数的时间调制并采用能量方法,我们建立了渐近、非线性和轨道稳定性,前提是辅助Schrödinger方程具有精确的一个界态。值得注意的是,我们的结果与轮廓的单调性无关,并且不需要初始条件靠近前面。我们根据表征行波剖面“宽度”的函数确定了稳定性的充分条件。对KdVB方程的分析验证证实,这个充分条件对开放区间内的相对色散参数成立,包括所有单调剖面。利用经过验证的数值或严格的计算,我们提出了一个计算机辅助证明,证明参数值在区间[0.2533,3.9]内的稳定性条件本身成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic stability of sharp fronts: Analysis and rigorous computation
We investigate the stability of traveling front solutions to nonlinear diffusive-dispersive equations of Burgers type, with a primary focus on the Korteweg-de Vries–Burgers (KdVB) equation, although our analytical findings extend more broadly. Manipulating the temporal modulation of the translation parameter of the front and employing the energy method, we establish asymptotic, nonlinear, and orbital stability, provided that an auxiliary Schrödinger equation possesses precisely one bound state. Notably, our result is independent of the monotonicity of the profile and does not necessitate the initial condition to be close to the front. We identify a sufficient condition for stability based on a functional that characterizes the ‘width’ of the traveling wave profile. Analytical verification for the KdVB equation confirms that this sufficient condition holds for the relative dispersion parameter within an open interval [0.25,0.25], encompassing all monotone profiles. Utilizing validated numerics or rigorous computation, we present a computer-assisted proof demonstrating that the stability condition itself holds for parameter values within the interval [0.2533,3.9].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信