The Gierer-Meinhardt system in the entire space with non-local proliferation rates

IF 2.4 2区 数学 Q1 MATHEMATICS
Marius Ghergu , Nikos I. Kavallaris , Yasuhito Miyamoto
{"title":"The Gierer-Meinhardt system in the entire space with non-local proliferation rates","authors":"Marius Ghergu ,&nbsp;Nikos I. Kavallaris ,&nbsp;Yasuhito Miyamoto","doi":"10.1016/j.jde.2025.113559","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we present a novel stationary Gierer-Meinhardt system incorporating non-local proliferation rates, defined as follows:<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>λ</mi><mi>u</mi><mo>=</mo><mfrac><mrow><mi>J</mi><mo>⁎</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup></mrow><mrow><msup><mrow><mi>v</mi></mrow><mrow><mi>q</mi></mrow></msup></mrow></mfrac><mo>+</mo><mi>ρ</mi><mo>(</mo><mi>x</mi><mo>)</mo></mtd><mtd><mspace></mspace><mtext> in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mspace></mspace><mo>,</mo><mi>N</mi><mo>≥</mo><mn>1</mn><mo>,</mo></mtd></mtr><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>v</mi><mo>+</mo><mi>μ</mi><mi>v</mi><mo>=</mo><mfrac><mrow><mi>J</mi><mo>⁎</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup></mrow><mrow><msup><mrow><mi>v</mi></mrow><mrow><mi>s</mi></mrow></msup></mrow></mfrac></mtd><mtd><mspace></mspace><mtext> in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>.</mo></mtd></mtr></mtable></mrow></math></span></span></span> This system emerges in various contexts, such as biological morphogenesis, where two interacting chemicals, identified as an activator and an inhibitor, are described, and in ecological systems modeling the interaction between two species, classified as specialists and generalists. The non-local interspecies interactions are represented by the terms <span><math><mi>J</mi><mo>⁎</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>,</mo><mi>J</mi><mo>⁎</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> where the ⁎-symbol denotes the convolution operation in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> with a kernel <span><math><mi>J</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo><mo>)</mo></math></span>. In the system, we assume that <span><math><mn>0</mn><mo>&lt;</mo><mi>ρ</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn><mo>,</mo><mi>γ</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></math></span> with <span><math><mi>γ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, while the parameters satisfy <span><math><mi>λ</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>s</mi><mo>&gt;</mo><mn>0</mn></math></span> and <span><math><mi>p</mi><mo>&gt;</mo><mn>1</mn></math></span>. Under various integrability conditions on the kernel <em>J</em>, we establish the existence and non-existence of classical positive solutions in the function space <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>l</mi><mi>o</mi><mi>c</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>δ</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></math></span>. These results further highlight the influence of the non-local terms, particularly the proliferation rates, in the proposed model.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"444 ","pages":"Article 113559"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005868","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present a novel stationary Gierer-Meinhardt system incorporating non-local proliferation rates, defined as follows:{Δu+λu=Jupvq+ρ(x) in RN,N1,Δv+μv=Jumvs in RN. This system emerges in various contexts, such as biological morphogenesis, where two interacting chemicals, identified as an activator and an inhibitor, are described, and in ecological systems modeling the interaction between two species, classified as specialists and generalists. The non-local interspecies interactions are represented by the terms Jup,Jum where the ⁎-symbol denotes the convolution operation in RN with a kernel JC1(RN{0}). In the system, we assume that 0<ρC0,γ(RN) with γ(0,1), while the parameters satisfy λ,μ,q,m,s>0 and p>1. Under various integrability conditions on the kernel J, we establish the existence and non-existence of classical positive solutions in the function space Cloc2,δ(RN). These results further highlight the influence of the non-local terms, particularly the proliferation rates, in the proposed model.
具有非局部扩散率的整个空间中的Gierer-Meinhardt系统
在这项工作中,我们提出了一个具有非局部增殖率的新型平稳Gierer-Meinhardt系统,定义如下:在RN中,{−Δu+λu=J upvq+ρ(x),N≥1,−Δv+μv=J umvs。该系统出现在各种环境中,例如生物形态发生,其中描述了两种相互作用的化学物质,确定为活化剂和抑制剂,以及在生态系统中建模两个物种之间的相互作用,分类为专门型和通才型。非局域种间相互作用用J up,J um表示,其中的符号表示在RN中具有核J∈C1(RN∈{0})的卷积操作。在系统中,我们假设0<;ρ∈C0,γ(RN)且γ∈(0,1),而参数满足λ,μ,q,m,s>;0和p>;1。在核J上的各种可积条件下,我们建立了函数空间Cloc2,δ(RN)中经典正解的存在性和不存在性。这些结果进一步突出了模型中非局部项,特别是扩散率的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信