Symmetry breaking bifurcation and the stability of stationary solutions of a phase-field model

IF 2.4 2区 数学 Q1 MATHEMATICS
Yasuhito Miyamoto , Tatsuki Mori , Sohei Tasaki , Tohru Tsujikawa , Shoji Yotsutani
{"title":"Symmetry breaking bifurcation and the stability of stationary solutions of a phase-field model","authors":"Yasuhito Miyamoto ,&nbsp;Tatsuki Mori ,&nbsp;Sohei Tasaki ,&nbsp;Tohru Tsujikawa ,&nbsp;Shoji Yotsutani","doi":"10.1016/j.jde.2025.113500","DOIUrl":null,"url":null,"abstract":"<div><div>We have been investigating the global bifurcation diagrams of stationary solutions for a phase field model proposed by Fix and Caginalp in a one-dimensional case. It has recently been shown that there exists a secondary bifurcation with a symmetry-breaking phenomenon from a branch consisting of symmetric solutions in the case where the total enthalpy equals zero. In this paper, we determine the stability/instability of all symmetric solutions and asymmetric solutions near the secondary bifurcation point. Moreover, we show representation formulas for all eigenvalues and eigenfunctions for the linearized eigenvalue problem around the symmetric solutions.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"441 ","pages":"Article 113500"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005273","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We have been investigating the global bifurcation diagrams of stationary solutions for a phase field model proposed by Fix and Caginalp in a one-dimensional case. It has recently been shown that there exists a secondary bifurcation with a symmetry-breaking phenomenon from a branch consisting of symmetric solutions in the case where the total enthalpy equals zero. In this paper, we determine the stability/instability of all symmetric solutions and asymmetric solutions near the secondary bifurcation point. Moreover, we show representation formulas for all eigenvalues and eigenfunctions for the linearized eigenvalue problem around the symmetric solutions.
相场模型的对称破缺分岔与稳态解的稳定性
本文研究了Fix和Caginalp提出的一维相场模型稳态解的全局分岔图。最近的研究表明,在总焓为零的情况下,由对称解组成的分支存在具有对称破缺现象的二次分叉。在本文中,我们确定了所有对称解和非对称解在二次分叉点附近的稳定性/不稳定性。此外,我们给出了围绕对称解的线性化特征值问题的所有特征值和特征函数的表示公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信