Global existence and optimal decay rates of strong solutions to the equilibrium diffusion model arising in radiation hydrodynamics

IF 2.4 2区 数学 Q1 MATHEMATICS
Peng Jiang , Fucai Li , Jinkai Ni
{"title":"Global existence and optimal decay rates of strong solutions to the equilibrium diffusion model arising in radiation hydrodynamics","authors":"Peng Jiang ,&nbsp;Fucai Li ,&nbsp;Jinkai Ni","doi":"10.1016/j.jde.2025.113557","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the global existence and optimal decay rates of strong solutions in the critical Sobolev space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> to the equilibrium diffusion model arising in radiation hydrodynamics. This model is composed of the full compressible Navier-Stokes equations with radiation diffusion terms. Assuming that the initial data <span><math><mo>(</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> is sufficiently small in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm, we establish the global existence of strong solutions near the equilibrium state <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> by applying the refined energy method. Then, by performing Fourier analysis techniques and exploiting the frequency decomposition method, we get the optimal time-decay rates of strong solutions (including the highest order spatial derivatives) in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm. In particular, the lower bound of time-decay rates of strong solutions is also obtained by making use of Hodge decomposition, delicate spectral analysis and the theory of Besov space. In addition, we obtain the exponential decay of strong solutions in the periodic domain case.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"443 ","pages":"Article 113557"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005844","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the global existence and optimal decay rates of strong solutions in the critical Sobolev space H2(R3) to the equilibrium diffusion model arising in radiation hydrodynamics. This model is composed of the full compressible Navier-Stokes equations with radiation diffusion terms. Assuming that the initial data (n0,u0,θ0) is sufficiently small in H2-norm, we establish the global existence of strong solutions near the equilibrium state (1,0,1) by applying the refined energy method. Then, by performing Fourier analysis techniques and exploiting the frequency decomposition method, we get the optimal time-decay rates of strong solutions (including the highest order spatial derivatives) in L2-norm. In particular, the lower bound of time-decay rates of strong solutions is also obtained by making use of Hodge decomposition, delicate spectral analysis and the theory of Besov space. In addition, we obtain the exponential decay of strong solutions in the periodic domain case.
辐射流体动力学中平衡扩散模型强解的整体存在性和最优衰减率
本文研究了辐射流体动力学中平衡扩散模型在临界Sobolev空间H2(R3)中强解的整体存在性和最优衰减率。该模型由带辐射扩散项的全可压缩Navier-Stokes方程组成。假设初始数据(n0,u0,θ0)在h2范数下足够小,我们应用精细能量法建立了平衡态(1,0,1)附近强解的全局存在性。然后,通过执行傅里叶分析技术和利用频率分解方法,我们得到了l2范数强解(包括最高阶空间导数)的最佳时间衰减率。特别是利用Hodge分解、精细谱分析和Besov空间理论,得到了强解时间衰减率的下界。此外,我们还得到了周期域情况下强解的指数衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信