Marius Ghergu , Nikos I. Kavallaris , Yasuhito Miyamoto
{"title":"具有非局部扩散率的整个空间中的Gierer-Meinhardt系统","authors":"Marius Ghergu , Nikos I. Kavallaris , Yasuhito Miyamoto","doi":"10.1016/j.jde.2025.113559","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we present a novel stationary Gierer-Meinhardt system incorporating non-local proliferation rates, defined as follows:<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>λ</mi><mi>u</mi><mo>=</mo><mfrac><mrow><mi>J</mi><mo>⁎</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup></mrow><mrow><msup><mrow><mi>v</mi></mrow><mrow><mi>q</mi></mrow></msup></mrow></mfrac><mo>+</mo><mi>ρ</mi><mo>(</mo><mi>x</mi><mo>)</mo></mtd><mtd><mspace></mspace><mtext> in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mspace></mspace><mo>,</mo><mi>N</mi><mo>≥</mo><mn>1</mn><mo>,</mo></mtd></mtr><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>v</mi><mo>+</mo><mi>μ</mi><mi>v</mi><mo>=</mo><mfrac><mrow><mi>J</mi><mo>⁎</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup></mrow><mrow><msup><mrow><mi>v</mi></mrow><mrow><mi>s</mi></mrow></msup></mrow></mfrac></mtd><mtd><mspace></mspace><mtext> in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>.</mo></mtd></mtr></mtable></mrow></math></span></span></span> This system emerges in various contexts, such as biological morphogenesis, where two interacting chemicals, identified as an activator and an inhibitor, are described, and in ecological systems modeling the interaction between two species, classified as specialists and generalists. The non-local interspecies interactions are represented by the terms <span><math><mi>J</mi><mo>⁎</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>,</mo><mi>J</mi><mo>⁎</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> where the ⁎-symbol denotes the convolution operation in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> with a kernel <span><math><mi>J</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo><mo>)</mo></math></span>. In the system, we assume that <span><math><mn>0</mn><mo><</mo><mi>ρ</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn><mo>,</mo><mi>γ</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></math></span> with <span><math><mi>γ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, while the parameters satisfy <span><math><mi>λ</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>s</mi><mo>></mo><mn>0</mn></math></span> and <span><math><mi>p</mi><mo>></mo><mn>1</mn></math></span>. Under various integrability conditions on the kernel <em>J</em>, we establish the existence and non-existence of classical positive solutions in the function space <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>l</mi><mi>o</mi><mi>c</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>δ</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></math></span>. These results further highlight the influence of the non-local terms, particularly the proliferation rates, in the proposed model.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"444 ","pages":"Article 113559"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Gierer-Meinhardt system in the entire space with non-local proliferation rates\",\"authors\":\"Marius Ghergu , Nikos I. Kavallaris , Yasuhito Miyamoto\",\"doi\":\"10.1016/j.jde.2025.113559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we present a novel stationary Gierer-Meinhardt system incorporating non-local proliferation rates, defined as follows:<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>λ</mi><mi>u</mi><mo>=</mo><mfrac><mrow><mi>J</mi><mo>⁎</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup></mrow><mrow><msup><mrow><mi>v</mi></mrow><mrow><mi>q</mi></mrow></msup></mrow></mfrac><mo>+</mo><mi>ρ</mi><mo>(</mo><mi>x</mi><mo>)</mo></mtd><mtd><mspace></mspace><mtext> in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mspace></mspace><mo>,</mo><mi>N</mi><mo>≥</mo><mn>1</mn><mo>,</mo></mtd></mtr><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>v</mi><mo>+</mo><mi>μ</mi><mi>v</mi><mo>=</mo><mfrac><mrow><mi>J</mi><mo>⁎</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup></mrow><mrow><msup><mrow><mi>v</mi></mrow><mrow><mi>s</mi></mrow></msup></mrow></mfrac></mtd><mtd><mspace></mspace><mtext> in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>.</mo></mtd></mtr></mtable></mrow></math></span></span></span> This system emerges in various contexts, such as biological morphogenesis, where two interacting chemicals, identified as an activator and an inhibitor, are described, and in ecological systems modeling the interaction between two species, classified as specialists and generalists. The non-local interspecies interactions are represented by the terms <span><math><mi>J</mi><mo>⁎</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>,</mo><mi>J</mi><mo>⁎</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> where the ⁎-symbol denotes the convolution operation in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> with a kernel <span><math><mi>J</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo><mo>)</mo></math></span>. In the system, we assume that <span><math><mn>0</mn><mo><</mo><mi>ρ</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn><mo>,</mo><mi>γ</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></math></span> with <span><math><mi>γ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, while the parameters satisfy <span><math><mi>λ</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>s</mi><mo>></mo><mn>0</mn></math></span> and <span><math><mi>p</mi><mo>></mo><mn>1</mn></math></span>. Under various integrability conditions on the kernel <em>J</em>, we establish the existence and non-existence of classical positive solutions in the function space <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>l</mi><mi>o</mi><mi>c</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>δ</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></math></span>. These results further highlight the influence of the non-local terms, particularly the proliferation rates, in the proposed model.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"444 \",\"pages\":\"Article 113559\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625005868\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005868","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Gierer-Meinhardt system in the entire space with non-local proliferation rates
In this work, we present a novel stationary Gierer-Meinhardt system incorporating non-local proliferation rates, defined as follows: This system emerges in various contexts, such as biological morphogenesis, where two interacting chemicals, identified as an activator and an inhibitor, are described, and in ecological systems modeling the interaction between two species, classified as specialists and generalists. The non-local interspecies interactions are represented by the terms where the ⁎-symbol denotes the convolution operation in with a kernel . In the system, we assume that with , while the parameters satisfy and . Under various integrability conditions on the kernel J, we establish the existence and non-existence of classical positive solutions in the function space . These results further highlight the influence of the non-local terms, particularly the proliferation rates, in the proposed model.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics