Multiple normalized solutions for Schrödinger-Maxwell equation with Sobolev critical exponent and mixed nonlinearities

IF 2.4 2区 数学 Q1 MATHEMATICS
Jin-Cai Kang , Yong-Yong Li , Chun-Lei Tang
{"title":"Multiple normalized solutions for Schrödinger-Maxwell equation with Sobolev critical exponent and mixed nonlinearities","authors":"Jin-Cai Kang ,&nbsp;Yong-Yong Li ,&nbsp;Chun-Lei Tang","doi":"10.1016/j.jde.2025.113564","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the Schrödinger-Maxwell equation with critical growth<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>λ</mi><mi>u</mi><mo>+</mo><mi>κ</mi><mrow><mo>(</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>⁎</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mi>u</mi><mo>=</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>4</mn></mrow></msup><mi>u</mi><mo>+</mo><mi>μ</mi><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mspace></mspace><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></munder><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo></mtd></mtr></mtable></mrow></mrow></math></span></span></span> where <span><math><mi>a</mi><mo>&gt;</mo><mn>0</mn></math></span> is prescribed, <span><math><mi>κ</mi><mo>&gt;</mo><mn>0</mn></math></span>, <span><math><mi>μ</mi><mo>∈</mo><mi>R</mi></math></span>, <span><math><mn>2</mn><mo>&lt;</mo><mi>q</mi><mo>&lt;</mo><mn>6</mn></math></span>, ⁎ denotes the convolution and <span><math><mi>λ</mi><mo>∈</mo><mi>R</mi></math></span> appears as a Lagrange multiplier. Motivated by the works of Wei and Wu (2022) <span><span>[41]</span></span> for <span><math><mi>κ</mi><mo>=</mo><mn>0</mn></math></span> and Bellazzini and Siciliano (2011) <span><span>[5]</span></span> for homogeneous nonlinearity, we get two normalized solutions when <span><math><mi>q</mi><mo>∈</mo><mo>(</mo><mn>2</mn><mo>,</mo><mfrac><mrow><mn>8</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>)</mo></math></span> and <span><math><mi>μ</mi><mo>&gt;</mo><mn>0</mn></math></span>, one of which is ground state normalized solution. It is worth emphasizing that the method of Schwarz spherical rearrangement is invalid for the case of <span><math><mi>κ</mi><mo>&gt;</mo><mn>0</mn></math></span>, different from the case of <span><math><mi>κ</mi><mo>=</mo><mn>0</mn></math></span>, and it is hard to establish the strictly subadditive inequality of least energy to exclude the dichotomy of minimizing sequence standardly. To our knowledge, the existence of second solution for the above problem has not been addressed in the current literatures. Moreover, we will show a nonexistence result of positive normalized solution when <span><math><mi>μ</mi><mo>≤</mo><mn>0</mn></math></span> and <span><math><mi>q</mi><mo>∈</mo><mo>(</mo><mn>2</mn><mo>,</mo><mn>6</mn><mo>)</mo></math></span>, which can be regarded as a generalization and improvement of Jeanjean and Le (2021) <span><span>[21]</span></span> from the case of <span><math><mi>μ</mi><mo>=</mo><mn>0</mn></math></span> to the case of <span><math><mi>μ</mi><mo>≠</mo><mn>0</mn></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"443 ","pages":"Article 113564"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005911","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the Schrödinger-Maxwell equation with critical growth{Δu+λu+κ(|x|1|u|2)u=|u|4u+μ|u|q2uinR3,R3|u|2dx=a2, where a>0 is prescribed, κ>0, μR, 2<q<6, ⁎ denotes the convolution and λR appears as a Lagrange multiplier. Motivated by the works of Wei and Wu (2022) [41] for κ=0 and Bellazzini and Siciliano (2011) [5] for homogeneous nonlinearity, we get two normalized solutions when q(2,83) and μ>0, one of which is ground state normalized solution. It is worth emphasizing that the method of Schwarz spherical rearrangement is invalid for the case of κ>0, different from the case of κ=0, and it is hard to establish the strictly subadditive inequality of least energy to exclude the dichotomy of minimizing sequence standardly. To our knowledge, the existence of second solution for the above problem has not been addressed in the current literatures. Moreover, we will show a nonexistence result of positive normalized solution when μ0 and q(2,6), which can be regarded as a generalization and improvement of Jeanjean and Le (2021) [21] from the case of μ=0 to the case of μ0.
具有Sobolev临界指数和混合非线性的Schrödinger-Maxwell方程的多重归一化解
本文研究了临界生长{−Δu+λu+κ(|x|−1 |u|2)u=|u|4u+μ|u|q−2uinR3,∫R3|u|2dx=a2的Schrödinger-Maxwell方程,其中a>;0被规定,κ>0, μ∈R, 2<q<6,表示卷积,λ∈R表现为拉格朗日乘子。受Wei and Wu(2022)[41]和Bellazzini and Siciliano(2011)[5]对κ=0和齐次非线性的研究启发,我们得到了q∈(2,83)和μ>;0时的两个归一化解,其中一个为基态归一化解。值得强调的是,与κ=0的情况不同,在κ>;0的情况下,Schwarz球面重排方法是无效的,并且很难建立严格的次可加性最小能量不等式来标准地排除最小序列的二分性。据我们所知,目前的文献尚未解决上述问题的第二解的存在性。此外,我们将给出μ≤0且q∈(2,6)时正归一化解的不存在性结果,这可以看作是Jeanjean和Le(2021)[21]从μ=0到μ≠0的推广和改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信