扩展域上Schrödinger-Poisson系统的小正则化解:多重性和渐近行为

IF 2.4 2区 数学 Q1 MATHEMATICS
Edwin Gonzalo Murcia , Gaetano Siciliano
{"title":"扩展域上Schrödinger-Poisson系统的小正则化解:多重性和渐近行为","authors":"Edwin Gonzalo Murcia ,&nbsp;Gaetano Siciliano","doi":"10.1016/j.jde.2025.113571","DOIUrl":null,"url":null,"abstract":"<div><div>Given a smooth bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, we consider the following nonlinear Schrödinger-Poisson type system<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>ϕ</mi><mi>u</mi><mo>−</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>=</mo><mi>ω</mi><mi>u</mi><mspace></mspace></mtd><mtd><mspace></mspace><mtext>in </mtext><mi>λ</mi><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>ϕ</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace></mtd><mtd><mspace></mspace><mtext>in </mtext><mi>λ</mi><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>&gt;</mo><mn>0</mn><mspace></mspace></mtd><mtd><mspace></mspace><mtext>in </mtext><mi>λ</mi><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>=</mo><mi>ϕ</mi><mo>=</mo><mn>0</mn><mspace></mspace></mtd><mtd><mspace></mspace><mtext>on </mtext><mo>∂</mo><mo>(</mo><mi>λ</mi><mi>Ω</mi><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mo>∫</mo></mrow><mrow><mi>λ</mi><mi>Ω</mi></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><mtext>d</mtext><mi>x</mi><mo>=</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace></mtd></mtr></mtable></mrow></math></span></span></span> in the expanding domain <span><math><mi>λ</mi><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo><mi>λ</mi><mo>&gt;</mo><mn>1</mn></math></span> and <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>)</mo></math></span>, in the unknowns <span><math><mo>(</mo><mi>u</mi><mo>,</mo><mi>ϕ</mi><mo>,</mo><mi>ω</mi><mo>)</mo></math></span>. We show that, for arbitrary large values of the expanding parameter <em>λ</em> and arbitrary small values of the mass <span><math><mi>ρ</mi><mo>&gt;</mo><mn>0</mn></math></span>, the number of solutions is at least the Ljusternick-Schnirelmann category of <em>λ</em>Ω. Moreover we show that as <span><math><mi>λ</mi><mo>→</mo><mo>+</mo><mo>∞</mo></math></span> the solutions found converge to a ground state of the problem in the whole space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"444 ","pages":"Article 113571"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small normalised solutions for a Schrödinger-Poisson system in expanding domains: Multiplicity and asymptotic behaviour\",\"authors\":\"Edwin Gonzalo Murcia ,&nbsp;Gaetano Siciliano\",\"doi\":\"10.1016/j.jde.2025.113571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a smooth bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, we consider the following nonlinear Schrödinger-Poisson type system<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>ϕ</mi><mi>u</mi><mo>−</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>=</mo><mi>ω</mi><mi>u</mi><mspace></mspace></mtd><mtd><mspace></mspace><mtext>in </mtext><mi>λ</mi><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>ϕ</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace></mtd><mtd><mspace></mspace><mtext>in </mtext><mi>λ</mi><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>&gt;</mo><mn>0</mn><mspace></mspace></mtd><mtd><mspace></mspace><mtext>in </mtext><mi>λ</mi><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>=</mo><mi>ϕ</mi><mo>=</mo><mn>0</mn><mspace></mspace></mtd><mtd><mspace></mspace><mtext>on </mtext><mo>∂</mo><mo>(</mo><mi>λ</mi><mi>Ω</mi><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mo>∫</mo></mrow><mrow><mi>λ</mi><mi>Ω</mi></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><mtext>d</mtext><mi>x</mi><mo>=</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace></mtd></mtr></mtable></mrow></math></span></span></span> in the expanding domain <span><math><mi>λ</mi><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo><mi>λ</mi><mo>&gt;</mo><mn>1</mn></math></span> and <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>)</mo></math></span>, in the unknowns <span><math><mo>(</mo><mi>u</mi><mo>,</mo><mi>ϕ</mi><mo>,</mo><mi>ω</mi><mo>)</mo></math></span>. We show that, for arbitrary large values of the expanding parameter <em>λ</em> and arbitrary small values of the mass <span><math><mi>ρ</mi><mo>&gt;</mo><mn>0</mn></math></span>, the number of solutions is at least the Ljusternick-Schnirelmann category of <em>λ</em>Ω. Moreover we show that as <span><math><mi>λ</mi><mo>→</mo><mo>+</mo><mo>∞</mo></math></span> the solutions found converge to a ground state of the problem in the whole space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"444 \",\"pages\":\"Article 113571\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625005984\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005984","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个光滑的有限域Ω⊂R3,我们考虑下面的非线性Schrodinger-Poisson类型系统{−Δu +ϕ−| | u p−2 u =ω印尼λΩ,−Δϕ= u2inλΩ,标签;在λ0Ω,在∂u =ϕ= 0(λΩ),∫λΩu2dx =ρ2在扩展域λΩ⊂R3,λ在1和p∈(2、3),在未知(u,ϕω)。我们证明,对于膨胀参数λ的任意大值和质量ρ>;0的任意小值,解的数目至少是λΩ的Ljusternick-Schnirelmann范畴。此外,我们证明了当λ→+∞时,所找到的解收敛于问题在整个空间R3中的基态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Small normalised solutions for a Schrödinger-Poisson system in expanding domains: Multiplicity and asymptotic behaviour
Given a smooth bounded domain ΩR3, we consider the following nonlinear Schrödinger-Poisson type system{Δu+ϕu|u|p2u=ωuin λΩ,Δϕ=u2in λΩ,u>0in λΩ,u=ϕ=0on (λΩ),λΩu2dx=ρ2 in the expanding domain λΩR3,λ>1 and p(2,3), in the unknowns (u,ϕ,ω). We show that, for arbitrary large values of the expanding parameter λ and arbitrary small values of the mass ρ>0, the number of solutions is at least the Ljusternick-Schnirelmann category of λΩ. Moreover we show that as λ+ the solutions found converge to a ground state of the problem in the whole space R3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信