Qualitative analysis for Hartree-Fock system with Hardy-Littlewood-Sobolev critical exponent

IF 2.4 2区 数学 Q1 MATHEMATICS
Meng Li , Haoyuan Xu , Meihua Yang , Maoding Zhen
{"title":"Qualitative analysis for Hartree-Fock system with Hardy-Littlewood-Sobolev critical exponent","authors":"Meng Li ,&nbsp;Haoyuan Xu ,&nbsp;Meihua Yang ,&nbsp;Maoding Zhen","doi":"10.1016/j.jde.2025.113565","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we develop an exhaustive analysis on standing waves with prescribed mass for the coupled Hartree-Fock system as following, which is introduced by Hartree in the 1920's and developed by Fock for describing large systems of identical fermions,<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd></mtd><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>u</mi><mo>=</mo><mo>(</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msup><mo>⋆</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mi>u</mi><mo>+</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>γ</mi></mrow></msup><mo>⋆</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mi>u</mi><mo>+</mo><mi>β</mi><mo>(</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>γ</mi></mrow></msup><mo>⋆</mo><mo>|</mo><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mi>u</mi></mtd></mtr><mtr><mtd></mtd><mtd><mo>−</mo><mi>Δ</mi><mi>v</mi><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>v</mi><mo>=</mo><mo>(</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msup><mo>⋆</mo><mo>|</mo><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mi>v</mi><mo>+</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>γ</mi></mrow></msup><mo>⋆</mo><mo>|</mo><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mi>v</mi><mo>+</mo><mi>β</mi><mo>(</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>γ</mi></mrow></msup><mo>⋆</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mi>v</mi></mtd></mtr></mtable></mrow><mspace></mspace><mtext>in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span></span></span> under mass constraint conditions<span><span><span><math><mrow><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>5</mn></mrow></msup></mrow></munder><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>5</mn></mrow></msup></mrow></munder><mo>|</mo><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo></mrow></math></span></span></span> where <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&gt;</mo><mn>0</mn><mo>(</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo><mo>,</mo><mspace></mspace><mi>β</mi><mo>&gt;</mo><mn>0</mn></math></span>, <span><math><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mi>γ</mi><mo>≤</mo><mn>4</mn></math></span>, and the frequency <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>R</mi><mo>(</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> are a part of unknown and appear as Lagrange multipliers. Firstly, when <span><math><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mi>γ</mi><mo>=</mo><mn>2</mn></math></span> or <span><math><mi>α</mi><mo>=</mo><mn>2</mn><mo>&lt;</mo><mi>γ</mi><mo>&lt;</mo><mn>4</mn></math></span>, we establish an existence result by using the constrained minimization method. Then turning to the case of <span><math><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>2</mn><mo>&lt;</mo><mi>γ</mi><mo>&lt;</mo><mn>4</mn></math></span> or <span><math><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>2</mn><mo>,</mo><mi>γ</mi><mo>=</mo><mn>4</mn></math></span>, we show that the problem admits a ground state and an excited state, which are characterized respectively by a local minimizer and a mountain-pass critical point of the corresponding energy functional. Moreover, we give a precise mass collapse behaviors of the ground state solutions for <span><math><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>2</mn><mo>&lt;</mo><mi>γ</mi><mo>&lt;</mo><mn>4</mn></math></span> and <span><math><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>2</mn><mo>,</mo><mi>γ</mi><mo>=</mo><mn>4</mn></math></span> when the masses of two components vanish at the same rate. We also give a precise limit profiles of the mountain pass solutions when <span><math><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>2</mn><mo>,</mo><mi>γ</mi><mo>=</mo><mn>4</mn></math></span> as <span><math><mo>(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>)</mo><mo>→</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></math></span>. This seems to be the first contribution regarding the multiplicity as well as the synchronized mass collapse behaviors of the normalized solutions to Hartree-Fock system with Hardy-Littlewood-Sobolev critical exponent. Finally, when <span><math><mn>2</mn><mo>≤</mo><mi>α</mi><mo>&lt;</mo><mn>4</mn></math></span> and <span><math><mi>γ</mi><mo>=</mo><mn>4</mn></math></span>, we prove an existence result of the ground states, which are characterized by constrained mountain-pass critical points of the corresponding energy functional. Furthermore, precise limit profiles of the ground states are obtained when the masses of two components vanish. These results are a continuation of the works <span><span>[5]</span></span> and <span><span>[14]</span></span> concerning normalized solutions for Hartree equations to Hartree-Fock system with Hardy-Littlewood-Sobolev critical exponent.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"444 ","pages":"Article 113565"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005923","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we develop an exhaustive analysis on standing waves with prescribed mass for the coupled Hartree-Fock system as following, which is introduced by Hartree in the 1920's and developed by Fock for describing large systems of identical fermions,{Δu+λ1u=(|x|α|u|2)u+μ1(|x|γ|u|2)u+β(|x|γ|v|2)uΔv+λ2v=(|x|α|v|2)v+μ2(|x|γ|v|2)v+β(|x|γ|u|2)vin R5 under mass constraint conditionsR5|u|2=c2,R5|v|2=d2, where μi>0(i=1,2),β>0, 0<α<γ4, and the frequency λiR(i=1,2) are a part of unknown and appear as Lagrange multipliers. Firstly, when 0<α<γ=2 or α=2<γ<4, we establish an existence result by using the constrained minimization method. Then turning to the case of 0<α<2<γ<4 or 0<α<2,γ=4, we show that the problem admits a ground state and an excited state, which are characterized respectively by a local minimizer and a mountain-pass critical point of the corresponding energy functional. Moreover, we give a precise mass collapse behaviors of the ground state solutions for 0<α<2<γ<4 and 0<α<2,γ=4 when the masses of two components vanish at the same rate. We also give a precise limit profiles of the mountain pass solutions when 0<α<2,γ=4 as (c,d)(0,0). This seems to be the first contribution regarding the multiplicity as well as the synchronized mass collapse behaviors of the normalized solutions to Hartree-Fock system with Hardy-Littlewood-Sobolev critical exponent. Finally, when 2α<4 and γ=4, we prove an existence result of the ground states, which are characterized by constrained mountain-pass critical points of the corresponding energy functional. Furthermore, precise limit profiles of the ground states are obtained when the masses of two components vanish. These results are a continuation of the works [5] and [14] concerning normalized solutions for Hartree equations to Hartree-Fock system with Hardy-Littlewood-Sobolev critical exponent.
具有Hardy-Littlewood-Sobolev临界指数的Hartree-Fock系统的定性分析
在本文中,我们对具有规定质量的耦合Hartree-Fock系统的驻波进行了如下详尽的分析,该系统是由Hartree在20世纪20年代提出并由Fock发展来描述相同费米子的大系统:{−Δu+λ1u=(|x|−α - |u|2)u+μ1(|x|−γ - - - |u|2)u+β(|x|−- - - γ - - - |v|2)u−Δv+λ2v=(|x|−- - - |v|2)v+μ2(|x|−- - - |v|2)v+β(|x|−γ - - - |u|2)vin R5在质量约束条件下∫R5|u|2=c2,∫R5|v|2=d2,其中μi>;0(i=1,2),β> 0,0 <α<γ≤4,频率λi∈R(i=1,2)是未知数的一部分,表现为拉格朗日乘子。首先,当0<;α<γ=2或α=2<γ<;4时,利用约束最小化方法建立存在性结果。然后转到0<;α<2<γ<;4或0<;α<2,γ=4的情况下,我们证明了问题存在基态和激发态,它们分别由相应能量泛函的局部极小值和山口临界点表征。此外,我们给出了0<;α<2<γ<;4和0<;α<2,γ=4两组分质量以相同速率消失时基态解的精确质量坍缩行为。我们还给出了当0<;α<2,γ=4为(c,d)→(0,0)时山口解的精确极限曲线。这似乎是关于具有Hardy-Littlewood-Sobolev临界指数的Hartree-Fock系统的归一化解的多重性和同步质量坍缩行为的第一个贡献。最后,当2≤α<;4和γ=4时,我们证明了基态的存在性,其特征为对应能量泛函的受限山口临界点。此外,还得到了两组分质量消失时基态的精确极限分布。这些结果是[5]和[14]关于具有Hardy-Littlewood-Sobolev临界指数的Hartree- fock系统的Hartree方程归一化解的工作的延续。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信