{"title":"Small normalised solutions for a Schrödinger-Poisson system in expanding domains: Multiplicity and asymptotic behaviour","authors":"Edwin Gonzalo Murcia , Gaetano Siciliano","doi":"10.1016/j.jde.2025.113571","DOIUrl":null,"url":null,"abstract":"<div><div>Given a smooth bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, we consider the following nonlinear Schrödinger-Poisson type system<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>ϕ</mi><mi>u</mi><mo>−</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>=</mo><mi>ω</mi><mi>u</mi><mspace></mspace></mtd><mtd><mspace></mspace><mtext>in </mtext><mi>λ</mi><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>ϕ</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace></mtd><mtd><mspace></mspace><mtext>in </mtext><mi>λ</mi><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>></mo><mn>0</mn><mspace></mspace></mtd><mtd><mspace></mspace><mtext>in </mtext><mi>λ</mi><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>=</mo><mi>ϕ</mi><mo>=</mo><mn>0</mn><mspace></mspace></mtd><mtd><mspace></mspace><mtext>on </mtext><mo>∂</mo><mo>(</mo><mi>λ</mi><mi>Ω</mi><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mo>∫</mo></mrow><mrow><mi>λ</mi><mi>Ω</mi></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><mtext>d</mtext><mi>x</mi><mo>=</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace></mtd></mtr></mtable></mrow></math></span></span></span> in the expanding domain <span><math><mi>λ</mi><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo><mi>λ</mi><mo>></mo><mn>1</mn></math></span> and <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>)</mo></math></span>, in the unknowns <span><math><mo>(</mo><mi>u</mi><mo>,</mo><mi>ϕ</mi><mo>,</mo><mi>ω</mi><mo>)</mo></math></span>. We show that, for arbitrary large values of the expanding parameter <em>λ</em> and arbitrary small values of the mass <span><math><mi>ρ</mi><mo>></mo><mn>0</mn></math></span>, the number of solutions is at least the Ljusternick-Schnirelmann category of <em>λ</em>Ω. Moreover we show that as <span><math><mi>λ</mi><mo>→</mo><mo>+</mo><mo>∞</mo></math></span> the solutions found converge to a ground state of the problem in the whole space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"444 ","pages":"Article 113571"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005984","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Given a smooth bounded domain , we consider the following nonlinear Schrödinger-Poisson type system in the expanding domain and , in the unknowns . We show that, for arbitrary large values of the expanding parameter λ and arbitrary small values of the mass , the number of solutions is at least the Ljusternick-Schnirelmann category of λΩ. Moreover we show that as the solutions found converge to a ground state of the problem in the whole space .
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics