{"title":"On the sharp Hessian integrability conjecture in the plane","authors":"Thialita M. Nascimento, Eduardo V. Teixeira","doi":"10.1016/j.jde.2024.10.001","DOIUrl":"10.1016/j.jde.2024.10.001","url":null,"abstract":"<div><div>We prove that if <span><math><mi>u</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span> satisfies <span><math><mi>F</mi><mo>(</mo><mi>x</mi><mo>,</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo><mo>≤</mo><mn>0</mn></math></span> in <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, in the viscosity sense, for some fully nonlinear <span><math><mo>(</mo><mi>λ</mi><mo>,</mo><mi>Λ</mi><mo>)</mo></math></span>-elliptic operator, then <span><math><mi>u</mi><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>ε</mi></mrow></msup><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msub><mo>)</mo></math></span>, with appropriate estimates, for a sharp exponent <span><math><mi>ε</mi><mo>=</mo><mi>ε</mi><mo>(</mo><mi>λ</mi><mo>,</mo><mi>Λ</mi><mo>)</mo></math></span> verifying<span><span><span><math><mfrac><mrow><mn>1.629</mn></mrow><mrow><mfrac><mrow><mi>Λ</mi></mrow><mrow><mi>λ</mi></mrow></mfrac><mo>+</mo><mn>1</mn></mrow></mfrac><mo><</mo><mi>ε</mi><mo>(</mo><mi>λ</mi><mo>,</mo><mi>Λ</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><mi>Λ</mi></mrow><mrow><mi>λ</mi></mrow></mfrac><mo>+</mo><mn>1</mn></mrow></mfrac><mo>.</mo></math></span></span></span> The upper bound is conjectured to be the optimal one. Thus, the main new information proven in this paper is that the sharp Hessian integrability exponent for viscosity supersolutions in the plane remains <em>at least</em> 81.45% of its upper bound. This greatly improves previous known estimates.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"414 ","pages":"Pages 890-903"},"PeriodicalIF":2.4,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the Cauchy problem for a combined mCH-Novikov integrable equation with linear dispersion","authors":"Zhenyu Wan , Ying Wang , Min Zhu","doi":"10.1016/j.jde.2024.09.030","DOIUrl":"10.1016/j.jde.2024.09.030","url":null,"abstract":"<div><div>This paper aims to understand a blow-up mechanism on a family of shallow-water models with linear dispersion, which are linked with the modified Camassa-Holm equation and the Novikov equation. We first demonstrate the local well-posedness of the model equation in Besov spaces. Our blow-up analysis begins with two cases where the first case is <span><math><mn>2</mn><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>3</mn><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≠</mo><mn>0</mn></math></span> and then we deduce the results on the curvature blow-up in finite time. To overcome the lack of conservation in the functional due to weak linear dispersion, we can determine a suitable alternative via a slight modification to conserved quantity <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>[</mo><mi>u</mi><mo>]</mo></math></span> (see <span><span>Lemma 4.1</span></span>). Furthermore, we explore the formation of singularities in another case when nonlocal terms are absent. Lastly, we investigate the Gevrey regularity and analyticity of solutions for Cauchy problem within a specified range of Gevrey-Sobolev spaces by employing the generalized Ovsyannikov theorem and study the continuity of the data-to-solution mapping.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 727-767"},"PeriodicalIF":2.4,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On some regularity properties of mixed local and nonlocal elliptic equations","authors":"Xifeng Su , Enrico Valdinoci , Yuanhong Wei , Jiwen Zhang","doi":"10.1016/j.jde.2024.10.003","DOIUrl":"10.1016/j.jde.2024.10.003","url":null,"abstract":"<div><div>This article is concerned with “up to <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span>-regularity results” about a mixed local-nonlocal nonlinear elliptic equation which is driven by the superposition of Laplacian and fractional Laplacian operators.</div><div>First of all, an estimate on the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> norm of weak solutions is established for more general cases than the ones present in the literature, including here critical nonlinearities.</div><div>We then prove the interior <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span>-regularity and the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span>-regularity up to the boundary of weak solutions, which extends previous results by the authors (Su et al., 2022, <span><span>[20]</span></span>), where the nonlinearities considered were of subcritical type.</div><div>In addition, we establish the interior <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span>-regularity of solutions for all <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> and the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span>-regularity up to the boundary for all <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></math></span>, with sharp regularity exponents.</div><div>For further perusal, we also include a strong maximum principle and some properties about the principal eigenvalue.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 576-613"},"PeriodicalIF":2.4,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T.J. Doumatè , J. Kotounou , L.A. Leadi , R.B. Salako
{"title":"Dynamics of classical solutions to a diffusive epidemic model with varying population demographics","authors":"T.J. Doumatè , J. Kotounou , L.A. Leadi , R.B. Salako","doi":"10.1016/j.jde.2024.09.058","DOIUrl":"10.1016/j.jde.2024.09.058","url":null,"abstract":"<div><div>We study the asymptotic dynamics of solutions to a diffusive epidemic model with varying population dynamics. The large-time behavior of solutions is completely described in spatially homogeneous environments. When the environment is spatially heterogeneous, it is shown that there exist two critical numbers <span><math><mn>1</mn><mo>≤</mo><msub><mrow><mi>σ</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>≤</mo><msup><mrow><mi>σ</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo><</mo><mo>∞</mo></math></span> such that if the ratio <span><math><mfrac><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>I</mi></mrow></msub></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>S</mi></mrow></msub></mrow></mfrac></math></span> of the infected population diffusion rate and the susceptible population rate either exceeds <span><math><msup><mrow><mi>σ</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> or is less than <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mo>⁎</mo></mrow></msub></math></span>, then the epidemic model has an endemic equilibrium (EE) solution if and only if the basic reproduction number (BRN) exceeds one. The unique EE is non-degenerate if <span><math><mfrac><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>I</mi></mrow></msub></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>S</mi></mrow></msub></mrow></mfrac><mo>≥</mo><msup><mrow><mi>σ</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. Furthermore, results on the global dynamics of solutions are established when <span><math><msup><mrow><mi>σ</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><mn>1</mn></math></span>. Our results shed some light on the differences on disease predictions for constant total population size models versus varying population size models. Results on the asymptotic profiles of the EEs for small population diffusion rates are also established.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 491-530"},"PeriodicalIF":2.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
William R. Green , Connor Lane , Benjamin Lyons , Shyam Ravishankar , Aden Shaw
{"title":"The massless Dirac equation in three dimensions: Dispersive estimates and zero energy obstructions","authors":"William R. Green , Connor Lane , Benjamin Lyons , Shyam Ravishankar , Aden Shaw","doi":"10.1016/j.jde.2024.10.005","DOIUrl":"10.1016/j.jde.2024.10.005","url":null,"abstract":"<div><div>We investigate dispersive estimates for the massless three dimensional Dirac equation with a potential. In particular, we show that the Dirac evolution satisfies a <span><math><msup><mrow><mo>〈</mo><mi>t</mi><mo>〉</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> decay rate as an operator from <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> to <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> regardless of the existence of zero energy eigenfunctions. We also show this decay rate may be improved to <span><math><msup><mrow><mo>〈</mo><mi>t</mi><mo>〉</mo></mrow><mrow><mo>−</mo><mn>1</mn><mo>−</mo><mi>γ</mi></mrow></msup></math></span> for any <span><math><mn>0</mn><mo>≤</mo><mi>γ</mi><mo><</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> at the cost of spatial weights. This estimate, along with the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> conservation law allows one to deduce a family of Strichartz estimates in the case of a threshold eigenvalue. We classify the structure of threshold obstructions as being composed of zero energy eigenfunctions. Finally, we show the Dirac evolution is bounded for all time with minimal requirements on the decay of the potential and smoothness of initial data.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 449-490"},"PeriodicalIF":2.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spreading properties for a predator-prey system with nonlocal dispersal and climate change","authors":"Rong Zhou, Shi-Liang Wu","doi":"10.1016/j.jde.2024.09.057","DOIUrl":"10.1016/j.jde.2024.09.057","url":null,"abstract":"<div><div>In this paper, we investigate the spreading properties for a predator-prey system with nonlocal dispersal and climate change. We are concerned with the case when the prey grow relatively rapidly at one side of the habitat and grow relatively slowly at another side of the habitat. We are interested in the effect of the climate change on the spreading speed of the predator and prey. In the case where the predator is faster than the prey, we show that the predator and the prey have the same leftward spreading speed and the same rightward spreading speed, respectively, which depend on <em>c</em>, the climate change speed, and <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mo>±</mo><mo>∞</mo><mo>)</mo></math></span>, the maximum and minimum speeds of the prey without predator. While in the case where the prey is faster than the predator, we find that the solution can form a multi-layer wave and the two species have different leftward spreading speeds and different rightward spreading speeds, which depend on <em>c</em>, <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mo>±</mo><mo>∞</mo><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mo>±</mo><mo>∞</mo><mo>)</mo></math></span>, the maximum and minimum speeds of the predator when the density of the prey attains its maximum and minimum capacity.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"415 ","pages":"Pages 791-828"},"PeriodicalIF":2.4,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Roberto de A. Capistrano–Filho , Thiago Yukio Tanaka
{"title":"Controls insensitizing the norm of solution of a Schrödinger type system with mixed dispersion","authors":"Roberto de A. Capistrano–Filho , Thiago Yukio Tanaka","doi":"10.1016/j.jde.2024.09.054","DOIUrl":"10.1016/j.jde.2024.09.054","url":null,"abstract":"<div><div>The main goal of this manuscript is to prove the existence of insensitizing controls for the fourth-order dispersive nonlinear Schrödinger equation with cubic nonlinearity. To obtain the main result we prove a null controllability property for a coupled fourth-order Schrödinger cascade type system with zero-order coupling which is equivalent to the insensitizing control problem. Precisely, employing a new Carleman estimates, we first obtain a null controllability result for the linearized system around zero, and then the null controllability for the nonlinear case is extended using an inverse mapping theorem.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 357-395"},"PeriodicalIF":2.4,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global existence of strong solutions to the compressible magnetohydrodynamic equations with large initial data and vacuum in R2","authors":"Xue Wang, Xiaojing Xu","doi":"10.1016/j.jde.2024.09.056","DOIUrl":"10.1016/j.jde.2024.09.056","url":null,"abstract":"<div><div>This paper concerns the Cauchy problem to the compressible magnetohydrodynamic equations in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> with the constant state of density at far field being vacuum or nonvacuum. Under the conditions that the adiabatic constant <span><math><mi>γ</mi><mo>></mo><mn>1</mn></math></span>, the shear viscosity coefficient <em>μ</em> is a positive constant, and the bulk one <span><math><mi>λ</mi><mo>(</mo><mi>ρ</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mi>β</mi></mrow></msup></math></span> with <span><math><mi>β</mi><mo>></mo><mn>4</mn><mo>/</mo><mn>3</mn></math></span>, we establish the global existence and uniqueness of strong solutions. In particular, the initial data can be arbitrarily large and the density is allowed to vanish initially. These results generalize and improve previous ones by Huang-Li (2022) and Jiu-Wang-Xin (2018) for compressible Navier-Stokes equations. This paper introduces some key weighted estimates on <em>H</em> and presents some delicate analysis to exploit the decay properties of solutions due to the strong coupling and interplay interaction.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"415 ","pages":"Pages 722-763"},"PeriodicalIF":2.4,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Minkowski problems arise from sub-linear elliptic equations","authors":"Qiuyi Dai, Xing Yi","doi":"10.1016/j.jde.2024.09.023","DOIUrl":"10.1016/j.jde.2024.09.023","url":null,"abstract":"<div><div>Let <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> be a bounded convex domain with boundary ∂Ω and <span><math><mi>ν</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> be the unit outer vector normal to ∂Ω at <em>x</em>. Let <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> be the unit sphere in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. Then, the Gauss mapping <span><math><mi>g</mi><mo>:</mo><mo>∂</mo><mi>Ω</mi><mo>→</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>, defined almost everywhere with respect to surface measure <em>σ</em>, is given by <span><math><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>ν</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>. For <span><math><mn>0</mn><mo><</mo><mi>β</mi><mo><</mo><mn>1</mn></math></span>, it is well known that the following problem of sub-linear elliptic equation<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>φ</mi><mo>=</mo><msup><mrow><mi>φ</mi></mrow><mrow><mi>β</mi></mrow></msup><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi></mtd></mtr><mtr><mtd><mi>φ</mi><mo>></mo><mn>0</mn><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi></mtd></mtr><mtr><mtd><mi>φ</mi><mo>=</mo><mn>0</mn><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mo>∂</mo><mi>Ω</mi></mtd></mtr></mtable></mrow></math></span></span></span> has a unique solution. Moreover, it is easy to prove that each component of <span><math><mi>∇</mi><mi>φ</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is well-defined almost everywhere on ∂Ω with respect to <em>σ</em>. Therefore, we can assign a measure <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>Ω</mi></mrow></msub></math></span> on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> such that <span><math><mi>d</mi><msub><mrow><mi>μ</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mo>=</mo><msub><mrow><mi>g</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><mo>|</mo><mi>∇</mi><mi>φ</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>σ</mi><mo>)</mo></math></span>. That is<span><span><span><math><munder><mo>∫</mo><mrow><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></munder><mi>f</mi><mo>(</mo><mi>ξ</mi><mo>)</mo><mi>d</mi><msub><mrow><mi>μ</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mo>(</mo><mi>ξ</mi><mo>)</mo><mo>=</mo><munder><mo>∫</mo><mrow><mo>∂</mo><mi>Ω</mi></mrow></munder><mi>f</mi><mo>(</mo><mi>ν</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo><mo>|</mo><mi>∇</mi><mi>φ</mi><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>σ</mi></math></span></span></span> for every <span><math><mi>f</mi><mo>∈</mo><mi>C</mi><mo>(</mo><msup><mrow><mi>S</mi></mrow>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"415 ","pages":"Pages 764-790"},"PeriodicalIF":2.4,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Large deviation principle for multi-scale fully local monotone stochastic dynamical systems with multiplicative noise","authors":"Wei Hong, Wei Liu, Luhan Yang","doi":"10.1016/j.jde.2024.09.059","DOIUrl":"10.1016/j.jde.2024.09.059","url":null,"abstract":"<div><div>This paper is devoted to proving the small noise asymptotic behavior, particularly large deviation principle, for multi-scale stochastic dynamical systems with fully local monotone coefficients driven by multiplicative noise. The main techniques rely on the weak convergence approach, the theory of pseudo-monotone operators and the time discretization scheme. The main results derived in this paper have broad applications to various multi-scale models, where the slow component could be such as stochastic porous medium equations, stochastic Cahn-Hilliard equations and stochastic 2D Liquid crystal equations.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 396-448"},"PeriodicalIF":2.4,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}