{"title":"Long-time behavior towards shock profiles for the Navier-Stokes-Poisson system","authors":"Moon-Jin Kang , Bongsuk Kwon , Wanyong Shim","doi":"10.1016/j.jde.2025.113479","DOIUrl":"10.1016/j.jde.2025.113479","url":null,"abstract":"<div><div>We study the stability of shock profiles in one spatial dimension for the isothermal Navier-Stokes-Poisson (NSP) system, which describes the dynamics of ions in a collision-dominated plasma. The NSP system admits a one-parameter family of smooth traveling waves, called shock profiles, for a given far-field condition satisfying the Lax entropy condition. In this paper, we prove that if the initial data is sufficiently close to a shock profile in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm, then the global solution of the Cauchy problem tends to the smooth manifold formed by the parametrized shock profiles as time goes to infinity. This is achieved using the method of <em>a</em>-contraction with shifts, which does not require the zero mass condition.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"442 ","pages":"Article 113479"},"PeriodicalIF":2.4,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144230894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Large time behavior of a gas-liquid two-phase flow with unequal phase velocities and degenerate viscosity","authors":"Guangyi Hong , Limei Zhu","doi":"10.1016/j.jde.2025.113468","DOIUrl":"10.1016/j.jde.2025.113468","url":null,"abstract":"<div><div>The main concern of this paper is the long time behavior of weak solutions to the one-dimensional compressible gas-liquid drift-flux model with a slip law in Lagrangian coordinates. Motivated by the applications of the model in the wellbore flow system, we mainly focus on a scenario that the gas-liquid two-phase flow is separated by a gas-dominated region that holds a specific pressure <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>></mo><mn>0</mn></math></span>. Under appropriate smallness assumptions on the initial energy, we show that the velocity <em>u</em> tends to 0 as time goes to infinity, and that the pressure function <em>P</em> converges to <span><math><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, whereas the mass-related function <em>Q</em> converges to a non-constant state. Besides, the pointwise interface behaviors, along with the exponential decay rates, of the solution are also studied. Our results reveal the prominent role of the pressure function in determining the asymptotic behavior of the two-phase flow that seems quite different from the one of the classical single-phase flow. The proof is based on some delicate energy estimates established by choosing some appropriate weight functions and adopting the Hardy inequality.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"441 ","pages":"Article 113468"},"PeriodicalIF":2.4,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144205417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bartosz Bieganowski , Pietro d'Avenia , Jacopo Schino
{"title":"Existence and dynamics of normalized solutions to Schrödinger equations with generic double-behaviour nonlinearities","authors":"Bartosz Bieganowski , Pietro d'Avenia , Jacopo Schino","doi":"10.1016/j.jde.2025.113489","DOIUrl":"10.1016/j.jde.2025.113489","url":null,"abstract":"<div><div>We study the existence of solutions <span><math><mo>(</mo><munder><mrow><mi>u</mi></mrow><mo>_</mo></munder><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><munder><mrow><mi>u</mi></mrow><mo>_</mo></munder></mrow></msub><mo>)</mo><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>;</mo><mi>R</mi><mo>)</mo><mo>×</mo><mi>R</mi></math></span> to<span><span><span><math><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>λ</mi><mi>u</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mspace></mspace><mtext>in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span></span></span> with <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span> and prescribed <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm, and the dynamics of the solutions to<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mi>i</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>Ψ</mi><mo>+</mo><mi>Δ</mi><mi>Ψ</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>Ψ</mi><mo>)</mo></mtd></mtr><mtr><mtd><mi>Ψ</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>ψ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>;</mo><mi>C</mi><mo>)</mo></mtd></mtr></mtable></mrow></math></span></span></span> with <span><math><msub><mrow><mi>ψ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> close to <span><math><munder><mrow><mi>u</mi></mrow><mo>_</mo></munder></math></span>. Here, the nonlinear term <em>f</em> has mass-subcritical growth at the origin, mass-supercritical growth at infinity, and is more general than the sum of two powers. Under different assumptions, we prove the existence of a locally least-energy solution, the orbital stability of all such solutions, the existence of a second solution with higher energy, and the strong instability of such a solution.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"441 ","pages":"Article 113489"},"PeriodicalIF":2.4,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144205418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Craig Cowan , Mohammad El Smaily , Pierre Aime Feulefack
{"title":"The principal eigenvalue of a mixed local and nonlocal operator with drift","authors":"Craig Cowan , Mohammad El Smaily , Pierre Aime Feulefack","doi":"10.1016/j.jde.2025.113480","DOIUrl":"10.1016/j.jde.2025.113480","url":null,"abstract":"<div><div>We study the eigenvalue problem involving the mixed local-nonlocal operator <span><math><mi>L</mi><mo>:</mo><mo>=</mo><mo>−</mo><mi>Δ</mi><mo>+</mo><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msup><mo>+</mo><mi>q</mi><mo>⋅</mo><mi>∇</mi><mo>+</mo><mi>a</mi><mo>(</mo><mi>x</mi><mo>)</mo><mrow><mi>Id</mi></mrow></math></span> in a bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>, where a Dirichlet condition is posed on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∖</mo><mi>Ω</mi></math></span>. The vector field <em>q</em> stands for a drift or advection in the medium. We prove the existence of a principal eigenvalue and a principal eigenfunction for <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>]</mo></math></span>. Moreover, we prove <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span> regularity, up to the boundary, of the solution to the problem <span><math><mi>L</mi><mi>u</mi><mo>=</mo><mi>f</mi></math></span> when coupled with a Dirichlet condition and <span><math><mn>0</mn><mo><</mo><mi>s</mi><mo><</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span>. To prove the regularity and the existence of a principal eigenvalue, we use the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> theory for <em>L</em> obtained via a continuation argument, Krein-Rutman theorem as well as a Hopf Lemma and a maximum principle for the operator <em>L</em>, which we derive in this paper.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"441 ","pages":"Article 113480"},"PeriodicalIF":2.4,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144205416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The lifespan of solutions of the 3D inhomogeneous incompressible Navier Stokes equations","authors":"Chenyin Qian, Xiaole Zheng","doi":"10.1016/j.jde.2025.113481","DOIUrl":"10.1016/j.jde.2025.113481","url":null,"abstract":"<div><div>The lifespan of solutions of 3D inhomogeneous incompressible Navier-Stokes system is investigated. In precisely, the lower estimate of the lifespan of solutions in Besov space is established if the bounded initial density possesses small perturbations near equilibrium, which is a generalization of the result of Zhang (2020) <span><span>[14]</span></span> in Sobolev spaces. By imposing additional regularity assumption that <span><math><msubsup><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msubsup><mo>−</mo><mn>1</mn><mo>∈</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mn>1</mn></mrow><mrow><mn>3</mn><mo>/</mo><mi>λ</mi></mrow></msubsup><mo>,</mo><mn>1</mn><mo><</mo><mi>λ</mi><mo><</mo><mn>6</mn></math></span>, the lifespan estimate of solution is also achieved without the small perturbations restriction on initial density.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"441 ","pages":"Article 113481"},"PeriodicalIF":2.4,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144205419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimal decay estimates for the radially symmetric compressible Navier-Stokes equations","authors":"Tsukasa Iwabuchi, Dáithí Ó hAodha","doi":"10.1016/j.jde.2025.113487","DOIUrl":"10.1016/j.jde.2025.113487","url":null,"abstract":"<div><div>We examine the large-time behaviour of solutions to the compressible Navier-Stokes equations under the assumption of radial symmetry. In particular, we calculate a fast time-decay estimate of the norm of the nonlinear part of the solution. This allows us to obtain a bound from below for the time-decay of the solution in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>, proving that our decay estimate in that space is sharp. The decay rate is the same as that of the linear problem for curl-free flow. We also obtain an estimate for a scalar system related to curl-free solutions to the compressible Navier-Stokes equations in a weighted Lebesgue space.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"441 ","pages":"Article 113487"},"PeriodicalIF":2.4,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144196313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Threshold convergence to steady states for nonlocal reaction-diffusion equations with time delay in bounded domain","authors":"Ming Mei , Lin Yang , Haifeng Hu , Dinghua Xu","doi":"10.1016/j.jde.2025.113474","DOIUrl":"10.1016/j.jde.2025.113474","url":null,"abstract":"<div><div>In this paper, we aim at studying the asymptotic behavior for the time-delayed nonlocal reaction-diffusion equation for population dynamics with Dirichlet boundary condition in <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. We recognize that there are threshold convergence results of the solutions which depend on the ecological parameters: the spatial diffusion coefficient <span><math><mi>D</mi><mo>></mo><mn>0</mn></math></span>, the death rate coefficient <span><math><mi>δ</mi><mo>></mo><mn>0</mn></math></span>, the birth rate coefficient <span><math><mi>p</mi><mo>></mo><mn>0</mn></math></span>, and two principal eigenvalues <span><math><mn>0</mn><mo><</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo><</mo><mn>1</mn></math></span> (<span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span>) of the linear nonlocal dispersion operators induced by the two different kernels with Dirichlet boundaries, respectively. Precisely, when <span><math><mn>0</mn><mo><</mo><mfrac><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mi>p</mi></mrow><mrow><mi>D</mi><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mi>δ</mi></mrow></mfrac><mo><</mo><mn>1</mn></math></span>, we prove that the solution globally converges to the trivial steady state 0 at the exponential rate. When <span><math><mn>1</mn><mo><</mo><mfrac><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mi>p</mi></mrow><mrow><mi>D</mi><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mi>δ</mi></mrow></mfrac><mo>≤</mo><mi>e</mi></math></span>, we further prove that the solution globally converges to the non-trivial steady state <span><math><mi>ϕ</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> at the exponential rate, and yet this convergence locally holds if <span><math><mi>e</mi><mo><</mo><mfrac><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mi>p</mi></mrow><mrow><mi>D</mi><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mi>δ</mi></mrow></mfrac><mo><</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. The convergence rates are also time-exponential. The proof is based on the Fourier transform and the energy method involving the eigenvalue problems for nonlocal dispersion equations. Some new techniques and skills for treating the nonlocality and non-monotonicity with restriction in bounded domain are also proposed. Finally, a number of numerical simulations are carried out, which confirm our theoretical results. For <span><math><mfrac><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mi>p</mi></mrow><mrow><mi>D</mi><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></m","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"441 ","pages":"Article 113474"},"PeriodicalIF":2.4,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144196314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New Liouville-type theorems for stationary solutions of the equations of motion of a magneto-micropolar fluid","authors":"Youseung Cho , Jiří Neustupa , Minsuk Yang","doi":"10.1016/j.jde.2025.113488","DOIUrl":"10.1016/j.jde.2025.113488","url":null,"abstract":"<div><div>We establish new Liouville-type theorems for smooth stationary solutions of the system of equations governing the motion of a magneto-micropolar fluid in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. <span><span>Theorem 1</span></span> imposes conditions on the growth of the averaged oscillations of the potentials of the velocity <strong>u</strong>, the angular rotation <strong>w</strong> of fluid particles, and the magnetic field <strong>b</strong>. <span><span>Theorem 2</span></span> imposes conditions on the rate of spatial growth of <strong>u</strong>, <strong>w</strong>, and <strong>b</strong>. As a direct consequence of <span><span>Theorem 2</span></span>, we obtain <span><span>Theorem 3</span></span>, where we assume that <strong>u</strong>, <strong>w</strong>, and <strong>b</strong> are integrable over <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> with exponents satisfying relatively weak restrictions.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"441 ","pages":"Article 113488"},"PeriodicalIF":2.4,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144190174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Positive solutions of the prescribed mean curvature equation with non-homogeneous mixed boundary conditions","authors":"Franco Obersnel, Pierpaolo Omari","doi":"10.1016/j.jde.2025.113462","DOIUrl":"10.1016/j.jde.2025.113462","url":null,"abstract":"<div><div>We investigate existence, non-existence, multiplicity, stability, and regularity issues for the positive bounded variation solutions of the prescribed mean curvature equation with non-zero mixed, Dirichlet-Neumann, boundary data,<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mrow><mi>div</mi></mrow><mo>(</mo><mi>∇</mi><mi>u</mi><mo>/</mo><msqrt><mrow><mn>1</mn><mo>+</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt><mo>)</mo><mo>=</mo><mi>λ</mi><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>h</mi><mo>(</mo><mi>u</mi><mo>)</mo><mspace></mspace></mtd><mtd><mrow><mspace></mspace><mtext> in </mtext><mi>Ω</mi></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>=</mo><mi>φ</mi><mspace></mspace></mtd><mtd><mrow><mspace></mspace><mtext> on </mtext><msub><mrow><mo>∂</mo></mrow><mrow><mi>D</mi></mrow></msub><mi>Ω</mi></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mo>−</mo><mi>∇</mi><mi>u</mi><mspace></mspace><msub><mrow><mi>ν</mi></mrow><mrow><mo>∂</mo><mi>Ω</mi></mrow></msub><mo>/</mo><msqrt><mrow><mn>1</mn><mo>+</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt><mo>=</mo><mi>ψ</mi><mspace></mspace></mtd><mtd><mrow><mspace></mspace><mtext> on </mtext><msub><mrow><mo>∂</mo></mrow><mrow><mi>N</mi></mrow></msub><mi>Ω</mi></mrow><mo>.</mo></mtd></mtr></mtable></mrow></math></span></span></span> Here, Ω is a bounded domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> with a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span> boundary ∂Ω and unit outer normal <span><math><msub><mrow><mi>ν</mi></mrow><mrow><mi>Ω</mi></mrow></msub></math></span> such that <span><math><mo>∂</mo><mi>Ω</mi><mo>=</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>D</mi></mrow></msub><mi>Ω</mi><mo>∪</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>N</mi></mrow></msub><mi>Ω</mi></math></span>, <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>D</mi></mrow></msub><mi>Ω</mi><mo>≠</mo><mo>∅</mo></math></span>, and <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>D</mi></mrow></msub><mi>Ω</mi><mo>∩</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>N</mi></mrow></msub><mi>Ω</mi><mo>=</mo><mo>∅</mo></math></span>, <span><math><mi>g</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>, <span><math><mi>h</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>(</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo><mo>)</mo></math></span>, <span><math><mi>φ</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mo>∂</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>)</mo></math></span>, <span><math><mo>−</mo><mi>ψ</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mo>∂</mo><msub><mrow><mi>Ω</mi></mrow><mrow","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"441 ","pages":"Article 113462"},"PeriodicalIF":2.4,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144190173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lp estimates for the Laplacian via blow-up","authors":"Jan Lewenstein-Sanpera , Xavier Ros-Oton","doi":"10.1016/j.jde.2025.113478","DOIUrl":"10.1016/j.jde.2025.113478","url":null,"abstract":"<div><div>In this note we provide a new proof of the <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msup></math></span> <em>Calderón-Zygmund</em> regularity estimates for the Laplacian, i.e., <span><math><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>f</mi></math></span> and its parabolic counterpart <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>f</mi></math></span>. Our proof is an adaptation of a contradiction and compactness argument that so far had been only used to prove estimates in Hölder spaces. This new approach is simpler than previous ones, and avoids the use of any interpolation theorem.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"441 ","pages":"Article 113478"},"PeriodicalIF":2.4,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144190175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}