Local well-posedness in Gevrey function spaces for 3D Boussinesq boundary layer system

IF 2.3 2区 数学 Q1 MATHEMATICS
Qian Li , Peixin Wang , Xiaojing Xu
{"title":"Local well-posedness in Gevrey function spaces for 3D Boussinesq boundary layer system","authors":"Qian Li ,&nbsp;Peixin Wang ,&nbsp;Xiaojing Xu","doi":"10.1016/j.jde.2025.113725","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the 3D Boussinesq boundary layer system in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, which is a coupling of the Prandtl type equations and a thermal layer equation due to the coupling of velocity and temperature in Boussinesq equations. We observe that there is also a cancellation mechanism in the temperature equation, which has been applied to the Prandtl equations in Li et al. (2022) <span><span>[14]</span></span>. Utilizing these cancellation mechanisms and constructing good unknowns, we overcome the loss of derivative arising in not only the velocity equations but also the temperature equation, then we show the local well-posedness of the Boussinesq boundary layer system in Gevrey function spaces. Furthermore, we obtain the optimal Gevrey index 2.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"450 ","pages":"Article 113725"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625007521","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the 3D Boussinesq boundary layer system in R+×R2, which is a coupling of the Prandtl type equations and a thermal layer equation due to the coupling of velocity and temperature in Boussinesq equations. We observe that there is also a cancellation mechanism in the temperature equation, which has been applied to the Prandtl equations in Li et al. (2022) [14]. Utilizing these cancellation mechanisms and constructing good unknowns, we overcome the loss of derivative arising in not only the velocity equations but also the temperature equation, then we show the local well-posedness of the Boussinesq boundary layer system in Gevrey function spaces. Furthermore, we obtain the optimal Gevrey index 2.
三维Boussinesq边界层系统Gevrey函数空间的局部适定性
本文考虑R+×R2中的三维Boussinesq边界层系统,由于Boussinesq方程中速度和温度的耦合,该系统是Prandtl型方程和热层方程的耦合。我们观察到温度方程中也存在一种抵消机制,该机制已应用于Li et al.(2022)[14]中的Prandtl方程。利用这些抵消机制和构造良好的未知数,克服了速度方程和温度方程的导数损失,证明了Gevrey函数空间中Boussinesq边界层系统的局部适定性。进一步,我们得到了最优Gevrey指数2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信