具有不同规律的随机广义哈密顿系统的Nekhoroshev稳定性

IF 2.3 2区 数学 Q1 MATHEMATICS
Bingqi Yu , Yong Li
{"title":"具有不同规律的随机广义哈密顿系统的Nekhoroshev稳定性","authors":"Bingqi Yu ,&nbsp;Yong Li","doi":"10.1016/j.jde.2025.113709","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we establish the Nekhoroshev stability of nearly integrable generalized Hamiltonian systems with bounded random perturbations possessing different regularity conditions. We generalize the original framework for proving the Nekhoroshev theorem. Using this unified framework, we can derive different normal form lemmas based on various regularity conditions, leading to results for stability times of different scales. Furthermore, this method allows perturbation functions with a certain degree of randomness and can be applied within the context of generalized Hamiltonian systems.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"448 ","pages":"Article 113709"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nekhoroshev stability for random generalized Hamiltonian systems with different regularities\",\"authors\":\"Bingqi Yu ,&nbsp;Yong Li\",\"doi\":\"10.1016/j.jde.2025.113709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we establish the Nekhoroshev stability of nearly integrable generalized Hamiltonian systems with bounded random perturbations possessing different regularity conditions. We generalize the original framework for proving the Nekhoroshev theorem. Using this unified framework, we can derive different normal form lemmas based on various regularity conditions, leading to results for stability times of different scales. Furthermore, this method allows perturbation functions with a certain degree of randomness and can be applied within the context of generalized Hamiltonian systems.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"448 \",\"pages\":\"Article 113709\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625007363\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625007363","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了具有不同正则性条件的有界随机扰动的近可积广义哈密顿系统的Nekhoroshev稳定性。我们推广了证明Nekhoroshev定理的原始框架。利用这个统一的框架,我们可以根据不同的正则性条件推导出不同的范式引理,从而得到不同尺度的稳定时间的结果。此外,该方法允许扰动函数具有一定程度的随机性,并可应用于广义哈密顿系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nekhoroshev stability for random generalized Hamiltonian systems with different regularities
In this article, we establish the Nekhoroshev stability of nearly integrable generalized Hamiltonian systems with bounded random perturbations possessing different regularity conditions. We generalize the original framework for proving the Nekhoroshev theorem. Using this unified framework, we can derive different normal form lemmas based on various regularity conditions, leading to results for stability times of different scales. Furthermore, this method allows perturbation functions with a certain degree of randomness and can be applied within the context of generalized Hamiltonian systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信