{"title":"α-稳定过程驱动奇异漂移SDEs的平均原理","authors":"Mengyu Cheng , Zimo Hao , Xicheng Zhang","doi":"10.1016/j.jde.2025.113706","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the convergence rate of the averaging principle for stochastic differential equations (SDEs) with <em>β</em>-Hölder drift driven by <em>α</em>-stable processes. More specifically, we first derive the Schauder estimate for nonlocal partial differential equations (PDEs) associated with the aforementioned SDEs, within the framework of Besov-Hölder spaces. Then we consider the case where <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo><mo>×</mo><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. Using the Schauder estimate, we establish the strong convergence rate for the averaging principle. In particular, under suitable conditions, we obtain the optimal rate of strong convergence when <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>∈</mo><mo>(</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>]</mo><mo>×</mo><mo>(</mo><mn>2</mn><mo>−</mo><mfrac><mrow><mn>3</mn><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>]</mo><mo>∪</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo><mo>×</mo><mo>(</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. Furthermore, when <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>×</mo><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>,</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo><mo>∪</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo><mo>×</mo><mo>(</mo><mfrac><mrow><mn>1</mn><mo>−</mo><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo></math></span>, we show the convergence of the martingale solutions of original systems to that of the averaged equation. In particular, when <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, the drift can be a distribution.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"449 ","pages":"Article 113706"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Averaging principle for SDEs with singular drifts driven by α-stable processes\",\"authors\":\"Mengyu Cheng , Zimo Hao , Xicheng Zhang\",\"doi\":\"10.1016/j.jde.2025.113706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we investigate the convergence rate of the averaging principle for stochastic differential equations (SDEs) with <em>β</em>-Hölder drift driven by <em>α</em>-stable processes. More specifically, we first derive the Schauder estimate for nonlocal partial differential equations (PDEs) associated with the aforementioned SDEs, within the framework of Besov-Hölder spaces. Then we consider the case where <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo><mo>×</mo><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. Using the Schauder estimate, we establish the strong convergence rate for the averaging principle. In particular, under suitable conditions, we obtain the optimal rate of strong convergence when <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>∈</mo><mo>(</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>]</mo><mo>×</mo><mo>(</mo><mn>2</mn><mo>−</mo><mfrac><mrow><mn>3</mn><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>]</mo><mo>∪</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo><mo>×</mo><mo>(</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. Furthermore, when <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>×</mo><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>,</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo><mo>∪</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo><mo>×</mo><mo>(</mo><mfrac><mrow><mn>1</mn><mo>−</mo><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo></math></span>, we show the convergence of the martingale solutions of original systems to that of the averaged equation. In particular, when <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, the drift can be a distribution.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"449 \",\"pages\":\"Article 113706\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625007338\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625007338","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Averaging principle for SDEs with singular drifts driven by α-stable processes
In this paper, we investigate the convergence rate of the averaging principle for stochastic differential equations (SDEs) with β-Hölder drift driven by α-stable processes. More specifically, we first derive the Schauder estimate for nonlocal partial differential equations (PDEs) associated with the aforementioned SDEs, within the framework of Besov-Hölder spaces. Then we consider the case where . Using the Schauder estimate, we establish the strong convergence rate for the averaging principle. In particular, under suitable conditions, we obtain the optimal rate of strong convergence when . Furthermore, when , we show the convergence of the martingale solutions of original systems to that of the averaged equation. In particular, when , the drift can be a distribution.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics