α-稳定过程驱动奇异漂移SDEs的平均原理

IF 2.3 2区 数学 Q1 MATHEMATICS
Mengyu Cheng , Zimo Hao , Xicheng Zhang
{"title":"α-稳定过程驱动奇异漂移SDEs的平均原理","authors":"Mengyu Cheng ,&nbsp;Zimo Hao ,&nbsp;Xicheng Zhang","doi":"10.1016/j.jde.2025.113706","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the convergence rate of the averaging principle for stochastic differential equations (SDEs) with <em>β</em>-Hölder drift driven by <em>α</em>-stable processes. More specifically, we first derive the Schauder estimate for nonlocal partial differential equations (PDEs) associated with the aforementioned SDEs, within the framework of Besov-Hölder spaces. Then we consider the case where <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo><mo>×</mo><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. Using the Schauder estimate, we establish the strong convergence rate for the averaging principle. In particular, under suitable conditions, we obtain the optimal rate of strong convergence when <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>∈</mo><mo>(</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>]</mo><mo>×</mo><mo>(</mo><mn>2</mn><mo>−</mo><mfrac><mrow><mn>3</mn><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>]</mo><mo>∪</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo><mo>×</mo><mo>(</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. Furthermore, when <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>×</mo><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>,</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo><mo>∪</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo><mo>×</mo><mo>(</mo><mfrac><mrow><mn>1</mn><mo>−</mo><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo></math></span>, we show the convergence of the martingale solutions of original systems to that of the averaged equation. In particular, when <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, the drift can be a distribution.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"449 ","pages":"Article 113706"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Averaging principle for SDEs with singular drifts driven by α-stable processes\",\"authors\":\"Mengyu Cheng ,&nbsp;Zimo Hao ,&nbsp;Xicheng Zhang\",\"doi\":\"10.1016/j.jde.2025.113706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we investigate the convergence rate of the averaging principle for stochastic differential equations (SDEs) with <em>β</em>-Hölder drift driven by <em>α</em>-stable processes. More specifically, we first derive the Schauder estimate for nonlocal partial differential equations (PDEs) associated with the aforementioned SDEs, within the framework of Besov-Hölder spaces. Then we consider the case where <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo><mo>×</mo><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. Using the Schauder estimate, we establish the strong convergence rate for the averaging principle. In particular, under suitable conditions, we obtain the optimal rate of strong convergence when <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>∈</mo><mo>(</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>]</mo><mo>×</mo><mo>(</mo><mn>2</mn><mo>−</mo><mfrac><mrow><mn>3</mn><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>]</mo><mo>∪</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo><mo>×</mo><mo>(</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. Furthermore, when <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>×</mo><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>,</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo><mo>∪</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo><mo>×</mo><mo>(</mo><mfrac><mrow><mn>1</mn><mo>−</mo><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo></math></span>, we show the convergence of the martingale solutions of original systems to that of the averaged equation. In particular, when <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, the drift can be a distribution.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"449 \",\"pages\":\"Article 113706\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625007338\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625007338","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了α-稳定过程驱动下具有β-Hölder漂移的随机微分方程(SDEs)平均原理的收敛速度。更具体地说,我们首先在Besov-Hölder空间框架内推导了与上述SDEs相关的非局部偏微分方程(PDEs)的Schauder估计。然后我们考虑(α,β)∈(0,2)×(1−α2,1)的情况。利用Schauder估计,建立了平均原理的强收敛速率。特别是在适当的条件下,我们得到了当(α,β)∈(23,1)×(2−3α2,1)∪(1,2)×(α2,1)时的最优强收敛率。进一步,当(α,β)∈(0,1)×(1−α,1−α2)∪(1,2)×(1−α2,1−α2)时,证明了原始方程组的鞅解收敛于平均方程的鞅解。特别是,当α∈(1,2)时,漂移可以是一个分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Averaging principle for SDEs with singular drifts driven by α-stable processes
In this paper, we investigate the convergence rate of the averaging principle for stochastic differential equations (SDEs) with β-Hölder drift driven by α-stable processes. More specifically, we first derive the Schauder estimate for nonlocal partial differential equations (PDEs) associated with the aforementioned SDEs, within the framework of Besov-Hölder spaces. Then we consider the case where (α,β)(0,2)×(1α2,1]. Using the Schauder estimate, we establish the strong convergence rate for the averaging principle. In particular, under suitable conditions, we obtain the optimal rate of strong convergence when (α,β)(23,1]×(23α2,1](1,2)×(α2,1]. Furthermore, when (α,β)(0,1]×(1α,1α2](1,2)×(1α2,1α2], we show the convergence of the martingale solutions of original systems to that of the averaged equation. In particular, when α(1,2), the drift can be a distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信