{"title":"Characterization and Biofilm Inhibition of Multidrug-Resistant <i>Acinetobacter baumannii</i> Isolates.","authors":"Poonam Yadav, Sreska Shrestha, Deepak Basyal, Ananda Tiwari, Ranjit Sah, Anil Kumar Sah, Bishal Yadav, Mark Willcox, Shyam Kumar Mishra","doi":"10.1155/ijm/5749982","DOIUrl":"https://doi.org/10.1155/ijm/5749982","url":null,"abstract":"<p><p>Multidrug-resistant (MDR) <i>Acinetobacter baumannii</i> poses a significant therapeutic challenge due to its resistance to multiple antibiotics and its ability to form biofilm. This study aimed to characterize MDR <i>A. baumannii</i> isolates for their biofilm-forming capabilities and the presence of common biofilm-related genes at a tertiary care university hospital in Nepal. In addition, it assessed the efficacy of various compounds, particularly essential oils, in inhibiting biofilm formation. Identification and antibiotic sensitivity testing of <i>A. baumannii</i> isolates from clinical specimens were conducted according to the guidelines of the American Society for Microbiology. Isolates were screened for motility profiles, biofilm production in a microtiter plate assay, and the presence of biofilm-related gene(s) by conventional polymerase chain reaction. The ability of cinnamaldehyde, ethylenediaminetetraacetic acid (EDTA), Tween 80, amino acids (glycine and glutamic acid), and natural plant extracts to inhibit biofilm formation was also tested using the microtiter plate system. Out of the total 200 <i>A. baumannii</i> isolates, 195 were MDR, with 192 able to produce biofilms. Among them, 83.1% were strong biofilm producers. In this study, 42.0% and 66.2% of the isolates exhibited twitching motility and surface-associated motility, respectively. Thirty MDR <i>A. baumannii</i> isolates from medical devices contained biofilm-related genes <i>csuE, ompA, bap,</i> and <i>bla</i> <sub>PER-1</sub>, in 90.0%, 53.3%, 46.6%, and 26.6% of strains, respectively. Cinnamaldehyde (0.875 mg/mL) was the most effective compound, inhibiting biofilm formation by 77.3%, followed by ethanolic extract of onion (77.2%), 0.5% Tween 80 (76.8%), and essential oil of ginger (70.8%). The majority of <i>A. baumannii</i> clinical isolates were strong biofilm producers and often possessed the biofilm-related genes <i>csuE</i> and <i>ompA</i>. Essential oils at 200 mg/L, along with Tween 80, were the most effective (≥ 67%) at inhibiting the formation of biofilms. These findings help to understand biofilm production and provide valuable insights into MDR <i>A. baumannii</i> isolates in this clinical setting.</p>","PeriodicalId":14098,"journal":{"name":"International Journal of Microbiology","volume":"2024 ","pages":"5749982"},"PeriodicalIF":2.8,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699987/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142931305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Antibiotic Resistance in Fermented Foods Chain: Evaluating the Risks of Emergence of <i>Enterococci</i> as an Emerging Pathogen in Raw Milk Cheese.","authors":"Celso Raul Silambo Chaves, Acácio Salamandane, Emília Joana F Vieira, Cátia Salamandane","doi":"10.1155/ijm/2409270","DOIUrl":"10.1155/ijm/2409270","url":null,"abstract":"<p><p>Fermented foods, particularly fermented dairy products, offer significant health benefits but also present serious concerns. Probiotic bacteria, such as lactic acid bacteria (LAB), found in these foods have been strongly linked to the selection and dissemination of antibiotic resistance genes (ARGs). This study aims to examine the potential risks associated with fermented foods, despite their importance in human nutrition, by analyzing the entire production chain from raw material acquisition to storage. Focusing on cheese production as a key fermented food, the study will investigate various aspects, including dairy farm management, milk acquisition, milk handling, and the application of good manufacturing practices (GMP) and good hygiene practices (GHP) in cheese production. The findings of this review highlight that ARGs found in LAB are similar to those observed in hygiene indicator bacteria like <i>E. coli</i> and pathogens like <i>S. aureus</i>. The deliberate use of antibiotics in dairy farms and the incorrect use of disinfectants in cheese factories contribute to the prevalence of antibiotic-resistant bacteria in cheeses. Cheese factories, with their high frequency of horizontal gene transfer, are environments where the microbiological diversity of raw milk can enhance ARG transfer. The interaction between the raw milk microbiota and other environmental microbiotas, facilitated by cross-contamination, increases metabolic communication between bacteria, further promoting ARG transfer. Understanding these bacterial and ARG interactions is crucial to ensure food safety for consumers.</p>","PeriodicalId":14098,"journal":{"name":"International Journal of Microbiology","volume":"2024 ","pages":"2409270"},"PeriodicalIF":2.8,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695086/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142921613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weiping Zhou, Xiaoyan Chen, Jie Chen, Xiuhua Zheng, Xueqiang Zhang, Yubin Chen, Yuehua Pan, Chunling Ma
{"title":"Genotype Distribution and High-Risk Factors Analysis of Group B Streptococcus in Late-Stage Pregnant Women in the Linyi Region.","authors":"Weiping Zhou, Xiaoyan Chen, Jie Chen, Xiuhua Zheng, Xueqiang Zhang, Yubin Chen, Yuehua Pan, Chunling Ma","doi":"10.1155/ijm/9910073","DOIUrl":"10.1155/ijm/9910073","url":null,"abstract":"<p><p><b>Objective:</b> To understand the colonization status of Group B Streptococcus (GBS) in the reproductive tract of pregnant women in the Linyi region, the drug resistance, genotype distribution, and molecular epidemiological characteristics of GBS, and to explore the high-risk factors for GBS infection in late-stage pregnant women. <b>Methods:</b> A total of 3269 pregnant women at 35-37 weeks of gestation who visited the Obstetrics Department of Linyi Maternal and Child Health Hospital from January 2019 to December 2021 were selected as the study subjects. Vaginal and rectal swabs were collected for GBS culture. Based on the culture results, they were divided into positive and negative groups. The high-risk factors such as age, BMI index, education level, pregnancy vomiting, and liver function indicators of the two groups were analyzed. Drug sensitivity test, multilocus sequence typing (MLST) gene typing, and virulence factor detection were performed on GBS (+) strains. <b>Results:</b> The infection rate of GBS in the reproductive tract of pregnant women in late pregnancy in the Linyi region was 7.07% (231/3269). The analysis of high-risk factors showed that having a college degree or above and absence of pregnancy vomiting; elevated levels of alanine aminotransferase, albumin, globulin, direct bilirubin, glutamyl transferase, and total bile acids; and decreased levels of alkaline phosphatase and lactate dehydrogenase were high-risk factors for GBS infection (<i>p</i> < 0.05). The MLST results showed that a total of 189 GBS strains were identified with 20 genotypes, the top four being ST10 type (25.40%), ST19 type (17.99%), ST529 type (13.76%), and ST862 type (12.70%). The 20 ST came from 8 CCs, with the main CC groups being CC12 (29.11%), CC19 (24.87%), CC103 (18.00%), and CC327 (13.76%). GBS strains showed high sensitivity to vancomycin, penicillin, and levofloxacin, all being 100%; sensitivity to erythromycin, clindamycin, compound novobiocin, and tetracycline was relatively low; there were statistically significant differences in resistance to erythromycin, clindamycin, and levofloxacin among different genotypes of GBS (<i>p</i> < 0.05). The detection rates of GBS virulence factors hylB (81.46%) and scpB (80.98%) were the highest. In ST10 type, > 90% of strains carried bac, bca, hylB, and scpB; in ST19 and ST529, > 90% of strains carried hylB and scpB; and in ST862, > 90% of strains carried CPSIII. <b>Conclusion:</b> The colonization rate of GBS in the reproductive tract of pregnant women in late pregnancy in the Linyi region is 7.07%. Having a college degree or above, absence of pregnancy vomiting, elevated levels of albumin, globulin, direct bilirubin, glutamyl transferase, and total bile acids, and decreased levels of alkaline phosphatase and lactate dehydrogenase are high-risk factors for GBS infection; ST10, ST19, ST529, and ST862 are the main genotypes prevalent in this region; there are regional differences in the distribution o","PeriodicalId":14098,"journal":{"name":"International Journal of Microbiology","volume":"2024 ","pages":"9910073"},"PeriodicalIF":2.8,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671658/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142902658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ararso Agegnehu Yetera, Tadesse Menjetta Nima, Musa Mohammed Ali, Moges Desta Ormago
{"title":"Urinary Tract Infection and Fetal Outcomes Among Pregnant Women in Adare General Hospital, Hawassa, Ethiopia.","authors":"Ararso Agegnehu Yetera, Tadesse Menjetta Nima, Musa Mohammed Ali, Moges Desta Ormago","doi":"10.1155/ijm/8562296","DOIUrl":"10.1155/ijm/8562296","url":null,"abstract":"<p><p><b>Background:</b> Fetal complications can occur if pregnant women with urinary tract infection (UTI) are not treated. We aimed to determine the magnitude of UTI, drug resistance profile, and fetal outcomes among pregnant women in Adare General Hospital, Hawassa, Ethiopia. <b>Methods:</b> Facility-based cross-sectional study was conducted among 308 pregnant women using questionnaire and review of medical records. From 308 randomly selected pregnant women, clean catch midstream urine samples were collected, processed, and inoculated onto MacConkey and blood agars and after incubation, the colonies were further confirmed by using standard biochemical tests. A binary logistic regression model was used to compute the explanatory variables with the outcome variable. A <i>p</i> value less than 0.05 was considered statistically significant. <b>Results:</b> The overall prevalence of UTI was 13.6% with a 95% CI: 10-18. Out of 42 samples, 39 (92.8%) UTI infections in women between the ages of 15 and 34 were identified. The three most common bacterial isolates were <i>Escherichia coli</i>, <i>Staphylococcus aureus</i>, and <i>Staphylococcus saprophyticus</i>. The majority of the Gram-negative bacteria isolates were resistant to ampicillin (96.2%) and trimethoprim-sulfamethoxazole (39%), while the Gram-positive bacteria were resistant to tetracycline (75%) and trimethoprim-sulfamethoxazole (68.8%). Of the total 308 pregnant women who participated in the study, there were 51 (16.6%) poor fetal outcomes. In this study, the presence of bacteriuria had a significant association with poor fetal outcomes (<i>p</i> value = 0.001). The mother's age, gravidity, level of education, occupation, marital status, and previous UTI history were not associated with the current UTI status. <b>Conclusions:</b> Poor fetal outcomes are strongly associated with UTI during pregnancy. Early detection of UTI and treatment after culture and antibiotic susceptibility testing should be a priority for the management of UTIs in pregnancy to avoid poor fetal outcomes.</p>","PeriodicalId":14098,"journal":{"name":"International Journal of Microbiology","volume":"2024 ","pages":"8562296"},"PeriodicalIF":2.8,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671665/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142902614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Esmeralda Rodríguez-Miranda, María de Lourdes Reyes-Escogido, Viridiana Olmedo-Ramírez, Octavio Jiménez-Garza, Sergio López-Briones, Marco Antonio Hernández-Luna
{"title":"Differential Expression of <i>fimH</i>, <i>ihf</i>, <i>upaB</i>, and <i>upaH</i> Genes in Biofilms- and Suspension-Grown Bacteria From Samples of Different Uropathogenic Strains of <i>Escherichia coli</i>.","authors":"Esmeralda Rodríguez-Miranda, María de Lourdes Reyes-Escogido, Viridiana Olmedo-Ramírez, Octavio Jiménez-Garza, Sergio López-Briones, Marco Antonio Hernández-Luna","doi":"10.1155/ijm/5235071","DOIUrl":"10.1155/ijm/5235071","url":null,"abstract":"<p><p>Uropathogenic <i>Escherichia coli</i> (UPEC) strains are the main bacteria that cause urinary tract infections (UTIs). UPEC are a significant public health hazard due to their high proliferation, antibiotic resistance, and infection recurrence. The ability to form biofilms is a mechanism of antibiotic resistance, which requires the expression of different genes such as <i>fimH</i>, <i>ihf</i>, <i>upaB</i>, and <i>upaH</i>. Despite the relevance of biofilm formation in bacterial pathogenicity, differences in the expression level of these genes among bacterial growth conditions have been little studied. Here, we have characterized the expression of <i>fimH</i>, <i>ihf</i>, <i>upaB</i>, and <i>upaH</i> genes in biofilms and suspension-grown bacteria of different <i>E. coli</i> strains. These included the UPEC CFT073, the multidrug-resistant strain CDC-AR-0346, and clinical isolates obtained from UTI patients. The expression of <i>fimH</i>, <i>ihf</i>, <i>upaB</i>, and <i>upaH</i> was markedly heterogeneous in clinical isolates, both in terms of transcript levels and response to suspension or biofilm conditions. That expression pattern was distinct from the one in UPEC CFT073, where <i>upaB</i> and <i>upaH</i> were upregulated and <i>ihf</i> and <i>fimH</i> were slightly downregulated in biofilm. In conclusion, the data presented here show that the pattern of biofilm-associated genes in the clinical isolates from UTI patients is not fully related to the reference strain of UPEC CFT073. However, analysis of a larger number of samples is required.</p>","PeriodicalId":14098,"journal":{"name":"International Journal of Microbiology","volume":"2024 ","pages":"5235071"},"PeriodicalIF":2.8,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658850/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142864248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Anticancer Effect of Mycotoxins From <i>Penicillium aurantiogriseum</i>: Exploration of Natural Product Potential.","authors":"Assia Bouhoudan, Joaira Bakkach, Mustapha Khaddor, Nadira Mourabit","doi":"10.1155/ijm/5553860","DOIUrl":"10.1155/ijm/5553860","url":null,"abstract":"<p><p>Research into biologically natural substances with antitumor properties, known for their potential to induce fewer side effects and exhibit specificity toward cancerous cells, remains imperative. The pressing demand for novel agents in cancer therapy underscores the intensive investigation of natural products from microorganisms. <i>Penicillium aurantiogriseum</i>, frequently isolated from food and feed, emerges as a promising candidate against pathogenic bacteria and fungi. This species harbors numerous mycotoxins that warrant extensive clinical study due to their potential in cancer treatment. Identifying mycotoxins with anticancer properties produced by <i>P. aurantiogriseum</i> could unveil novel therapeutic targets and enrich the pharmacological landscape. This review provides a comprehensive overview of the utilization of <i>P. aurantiogriseum</i> mycotoxins in cancer research and elucidates therapeutic agents' advantages and limitations. <i>P. aurantiogriseum</i> produces at least 15 mycotoxins with potent anticancer effects mediated through diverse mechanisms, including enzyme inhibition (e.g., pseurotin), induction of apoptosis (e.g., auranthine, aurantiamides A, aurantiomides A-C, penicillic acid, penitrem, verrucisidinol, acetate verrucosidinol, and chaetoglobosin A), and cell-cycle arrest (e.g., anicequol, aurantiamine, and Taxol). Although certain mycotoxins, such as Taxol, Anacin, and Compactin, are used in commerce, many others remain relatively unexplored. The mycotoxins derived from <i>P. aurantiogriseum</i> hold considerable potential for cancer treatment, offering novel therapeutic avenues and enhancing current treatments through synergistic combinations and advanced delivery systems.</p>","PeriodicalId":14098,"journal":{"name":"International Journal of Microbiology","volume":"2024 ","pages":"5553860"},"PeriodicalIF":2.8,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637627/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142818114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular Detection of Shiga Toxin-Producing <i>Escherichia coli</i> O177 Isolates, Their Antibiotic Resistance, and Virulence Profiles From Broiler Chickens.","authors":"Tsepo Ramatla, Tshepang Motlhaping, Nkanyezenhle Ndlovu, Kealeboga Mileng, Jody Howard, George Khasapane, Taole Ramaili, Prudent Mokgokong, Jane Nkhebenyane, Rendani Ndou, Kgaugelo Lekota, Oriel Thekisoe","doi":"10.1155/ijm/9778058","DOIUrl":"10.1155/ijm/9778058","url":null,"abstract":"<p><p>The World Health Organization (WHO) describes Shiga toxin-producing <i>Escherichia coli</i> (STEC) as a bacterium that can cause severe food-borne diseases. Common sources of infection include undercooked meat products and faecal contamination in vegetables. This study aimed to isolate, identify and assess the virulence and antibiotic resistance profiles of STEC isolates from broiler chicken faeces. Faecal samples were cultured, and polymerase chain reaction (PCR) was utilized to identify the isolates. Subsequently, the confirmed isolates were screened for seven virulence markers using PCR. The antibiotic susceptibility of the isolates to 13 different antibiotics was determined using the disk diffusion method. PCR was also employed to screen for antibiotic resistance genes. The <i>uidA</i> gene, which encodes the beta-glucuronidase enzyme, was detected in 62 (64.6%) of the 91 presumptively identified <i>E. coli</i> isolates. Of these, 23 isolates (37.1%) were confirmed to be <i>E. coli</i> O177 serogroup through amplification of <i>wzy</i> gene. All <i>E. coli</i> O177 isolates possessed the virulence <i>stx2</i> gene, while 65% carried the <i>stx1</i> gene. Among the <i>E. coli</i> O177 isolates, three harboured a combination of <i>vir + stx2 + stx1 + hlyA</i> genes, while one isolate contained a combination of <i>eaeA + stx2 + stx1 + hlyA</i> genes. All <i>E. coli</i> O177 isolates carried one or more antimicrobial resistance (AMR) genes, with 17 isolates (73.7%) identified as multidrug resistance (MDR). This is the first study to report the presence of <i>E. coli</i> O177 serotype from broiler chickens in South Africa. The findings reveal that broiler chicken faeces are a significant reservoir for MDR <i>E. coli</i> O177 and a potential source of AMR genes. These results underscore the importance of continuous surveillance and monitoring of the spread of AMR infectious bacteria in food-producing animals and their environments. The study also emphasizes that monitoring and control of poultry meat should be considered a major public health concern.</p>","PeriodicalId":14098,"journal":{"name":"International Journal of Microbiology","volume":"2024 ","pages":"9778058"},"PeriodicalIF":2.8,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11634401/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142812408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Alterations in Gut Microbiota Correlate With Hematological Injuries Induced by Radiation in Beagles.","authors":"Zongyu Huang, Likun Wang, Jianghui Tong, Yong Zhao, Hui Ling, Yazhou Zhou, Yafang Tan, Xiaohui Xiong, Yefeng Qiu, Yujing Bi, Zhiyuan Pan, Ruifu Yang","doi":"10.1155/ijm/3096783","DOIUrl":"10.1155/ijm/3096783","url":null,"abstract":"<p><p>Dynamics of gut microbiota and their associations with the corresponding hematological injuries postradiation remain to be elucidated. Using single whole-body exposure to <sup>60</sup>Co-<i>γ</i> ray radiation at the sublethal dose of 2.5 Gy, we developed a beagle model of acute radiation syndrome (ARS) and then monitored the longitudinal changes of gut microbiome and hematology for 45 days. We found that the absolute counts of circulating lymphocytes, neutrophils, and platelets were sharply declined postradiation, accompanied by a largely shifted composition of gut microbiome that manifested as a significantly increased ratio of <i>Firmicutes</i> to <i>Bacteroidetes</i>. In irradiated beagles, alterations in hematological parameters reached a nadir on day 14, sustaining for 1 week, which were gradually returned to the normal levels thereafter. However, no structural recovery of gut microbiota was observed throughout the study. Fecal metagenomics revealed that irradiation increased the relative abundances of genus <i>Streptococcus</i>, species <i>Lactobacillus animalis</i> and <i>Lactobacillus murinus</i>, but decreased those of genera <i>Prevotella</i> and <i>Bacteroides</i>. Metagenomic functions prediction demonstrated that 26 altered KEGG pathways were significantly enriched on Day 14 and 35 postradiation. Furthermore, a total of 43 bacterial species were found to correlate well with hematological parameters by Spearman's analysis. Our results provide an insight into the longitudinal changes in intestinal microbiota at different clinical stages during ARS in canine. Several key microbes those tightly associated with the hematological alterations may serve as biomarkers to discriminate the different phases of host with ARS.</p>","PeriodicalId":14098,"journal":{"name":"International Journal of Microbiology","volume":"2024 ","pages":"3096783"},"PeriodicalIF":2.8,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631345/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142807005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biopreservation of Food Using Bacteriocins From Lactic Acid Bacteria: Classification, Mechanisms, and Commercial Applications.","authors":"Dhea Alya Putri, Jiang Lei, Nia Rossiana, Yolani Syaputri","doi":"10.1155/ijm/8723968","DOIUrl":"10.1155/ijm/8723968","url":null,"abstract":"<p><p>Food is the primary substance needed by humans to survive. However, food is easily contaminated by spoilage bacteria, which cause a decrease in quality and shelf life. Moreover, spoilage bacteria in food can be pathogenic, leading to foodborne disease that endangers human health. This issue has also driven the widespread use of synthetic preservatives, which have negative effects both in the short and long term. Biopreservation efforts utilizing bacteriocins produced by lactic acid bacteria offer an alternative solution to prevent spoilage and extend the shelf life of food. These bacteriocins are safe to use as they are produced by lactic acid bacteria that are approved for use in food. The application of various types of bacteriocins as biopreservatives has been widely conducted. Several other types of bacteriocins are continuously being researched and developed to ensure their safety and suitability for use as food biopreservatives. This article highlights bacteriocins, including their classification, general overview, mechanisms of action, differences from antibiotics, diversity, applications, prospects, and challenges as future food biopreservatives. Additionally, this article presents commercial bacteriocins, namely, nisin and pediocin, which are frequently used for food preservation.</p>","PeriodicalId":14098,"journal":{"name":"International Journal of Microbiology","volume":"2024 ","pages":"8723968"},"PeriodicalIF":2.8,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11620799/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142785326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Olorunjuwon O Bello, Mathew O Oni, Temitope K Bello, Aderonke M Ilemobayo, Adebanke M Ajagunna, Adeleke Osho
{"title":"Biofilm-Forming Antibiotic-Resistant Bacteria in Water From Distribution Systems: Occurrence and Public Health Implications.","authors":"Olorunjuwon O Bello, Mathew O Oni, Temitope K Bello, Aderonke M Ilemobayo, Adebanke M Ajagunna, Adeleke Osho","doi":"10.1155/ijm/4147226","DOIUrl":"10.1155/ijm/4147226","url":null,"abstract":"<p><p>Biofilm is a structurally-connected microbial community, covered by a self-produced polymeric matrix and adhered to biotic or abiotic surfaces. This study aimed to evaluate the occurrence of biofilm-producing antibiotic-resistant bacteria in water from distribution systems. Water samples were taken from 32 tanks across Ondo City and Akure metropolis, Nigeria. Information regarding the sanitation status of the tanks was gathered by observation and oral interviews. The physicochemical properties were determined using standard methods. Using the pour plate technique. Agars included serially diluted water samples were inoculated onto plate count agar, mannitol salt agar, <i>Salmonella-Shigella</i> agar, MacConkey agar, and cetrimide nutrient agar to assess total viable bacteria, <i>Staphylococcus aureus</i>, <i>Salmonella</i> and <i>Shigella</i>, coliforms, and <i>Pseudomonas aeruginosa</i>, respectively. Eosin-methylene blue agar was used to cultivate <i>Escherichia coli</i> and <i>Enterobacter aerogenes.</i> Pure isolates were characterised using API kits and assessed for antibiotic resistance and biofilm production employing the Kirby-Bauer and tissue culture plate techniques, respectively. The ages of the water tanks ranged from 1 to 25 years old; all tanks had cover-lids; 13 (40.63%) had water guards while 12 (37.5%) underwent water treatment. The physicochemical properties chiefly fell within WHO standards for drinking water. One hundred and eighty-seven isolates were obtained. <i>S. aureus</i> (15.51%) had the highest frequency while <i>Salmonella enterica</i> (3.2%) had the lowest frequency. Thirty-six percent of the isolates were strong biofilm producers, while 20.67% Gram-negative and 18.69% Gram-positive bacterial isolates were antibiotic-resistant. This study revealed a high occurrence of biofilm-forming bacteria and prevalence of antibiotic-resistant bacteria in water distribution systems, emphasizing the urgency of improving water quality for public health protection.</p>","PeriodicalId":14098,"journal":{"name":"International Journal of Microbiology","volume":"2024 ","pages":"4147226"},"PeriodicalIF":2.8,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617039/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142780121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}