IEEE Journal of the Electron Devices Society最新文献

筛选
英文 中文
Correlation Between Quantum Confinement Effect and Characteristics of Thin-Film Transistors in Solution-Processed Oxide-Based Thin-Films 溶液加工氧化物薄膜中的量子约束效应与薄膜晶体管特性之间的相关性
IF 2 3区 工程技术
IEEE Journal of the Electron Devices Society Pub Date : 2024-09-26 DOI: 10.1109/JEDS.2024.3468300
Jinyeong Lee;Jaewook Jeong
{"title":"Correlation Between Quantum Confinement Effect and Characteristics of Thin-Film Transistors in Solution-Processed Oxide-Based Thin-Films","authors":"Jinyeong Lee;Jaewook Jeong","doi":"10.1109/JEDS.2024.3468300","DOIUrl":"https://doi.org/10.1109/JEDS.2024.3468300","url":null,"abstract":"In this paper, the photoluminescence characteristics of solution-processed amorphous ZnO and related compounds of InZnO and GaZnO thin films were comparatively analyzed. Depending on the molarity of the precursor solution, PL emission peaks ranging from 382.4 nm to 384.8 nm were observed for the ZnO thin films. The PL emission peaks were closely related to the surface morphology of the thin films, which were clearly observed when isolated, nano-sized particles of quantum dot structure were present, leading to quantum confinement effect in the ZnO and GaZnO thin films. When uniform thin films formed, the PL emission peaks disappeared due to the increase of electrical and morphological connectivity, which reveals that the analysis of PL emission peak can be used to evaluate the film quality and the performance of thin-film transistors (TFTs) in solution-processed oxide-based materials.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"12 ","pages":"912-918"},"PeriodicalIF":2.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10695762","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142442957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance Enhancement of Indium Zinc Oxide Thin-Film Transistors Through Process Optimizations 通过优化工艺提高氧化铟锌薄膜晶体管的性能
IF 2 3区 工程技术
IEEE Journal of the Electron Devices Society Pub Date : 2024-09-24 DOI: 10.1109/JEDS.2024.3466956
Mingjun Zhang;Jinyang Huang;Zihan Wang;Paramasivam Balasubramanian;Yan Yan;Ye Zhou;Su-Ting Han;Lei Lu;Meng Zhang
{"title":"Performance Enhancement of Indium Zinc Oxide Thin-Film Transistors Through Process Optimizations","authors":"Mingjun Zhang;Jinyang Huang;Zihan Wang;Paramasivam Balasubramanian;Yan Yan;Ye Zhou;Su-Ting Han;Lei Lu;Meng Zhang","doi":"10.1109/JEDS.2024.3466956","DOIUrl":"https://doi.org/10.1109/JEDS.2024.3466956","url":null,"abstract":"The device performance of indium zinc oxide (IZO) thin-film transistors (TFTs) is optimized through process optimizations. By jointly adjusting the annealing condition, the channel thickness and the sputtering atmosphere, the roughness and oxygen vacancies (Vos) are precisely regulated. The optimized IZO TFTs can achieve the highest field effect mobility of ~71.8 cm2/Vs with a threshold voltage of ~-0.6 V. Reliability of IZO TFTs under positive/negative bias stress is also examined. The interface quality and the Vo are two key factors influencing the device performance and reliability, confirmed by X-ray photoelectron spectroscopy and atomic force microscopy analysis.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"12 ","pages":"868-874"},"PeriodicalIF":2.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10690260","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142383447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Work-Function Variation in Ferroelectric Field-Effect Transistor 铁电场效应晶体管功函数变化的影响
IF 2 3区 工程技术
IEEE Journal of the Electron Devices Society Pub Date : 2024-09-23 DOI: 10.1109/JEDS.2024.3465594
Su Yeon Jung;Hyunwoo Kim;Jongmin Lee;Jang Hyun Kim
{"title":"Impact of Work-Function Variation in Ferroelectric Field-Effect Transistor","authors":"Su Yeon Jung;Hyunwoo Kim;Jongmin Lee;Jang Hyun Kim","doi":"10.1109/JEDS.2024.3465594","DOIUrl":"https://doi.org/10.1109/JEDS.2024.3465594","url":null,"abstract":"We analyzed the impact of work-function variation (WFV) in ferroelectric field-effect transistor (FeFET). To analyze the operation characteristics, we employed the technology computer-aided design (TCAD) simulations. After evaluating ferroelectricity (FE) characteristics and optimizing device model parameters through calibration, we extracted five key parameters from the hysteretic transfer curves of the FeFET: threshold voltage (Vth), on current (Iin), subthreshold swing (SS), off current (Ioff), and gate-induced drain leakage (GIDL). The extracted parameters were compared based on the presence or absence of FE and the ferroelectric thickness. It was confirmed that the presence of FE leads to increased variation due to dipole alignment with WFV, and that the electric field is maintained even with an increase in ferroelectric thickness","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"12 ","pages":"779-784"},"PeriodicalIF":2.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10685408","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Performance Carbon Nanotube Optoelectronic Transistor With Optimized Process for 3D Communication Circuit Applications 针对 3D 通信电路应用优化工艺的高性能碳纳米管光电晶体管
IF 2 3区 工程技术
IEEE Journal of the Electron Devices Society Pub Date : 2024-09-23 DOI: 10.1109/JEDS.2024.3465669
Shuang Liu;Heyi Huang;Yanqing Li;Yadong Zhang;Feixiong Wang;Zhaohao Zhang;Qingzhu Zhang;Jiali Huo;Jiaxin Yao;Jing Wen;Huaxiang Yin
{"title":"High-Performance Carbon Nanotube Optoelectronic Transistor With Optimized Process for 3D Communication Circuit Applications","authors":"Shuang Liu;Heyi Huang;Yanqing Li;Yadong Zhang;Feixiong Wang;Zhaohao Zhang;Qingzhu Zhang;Jiali Huo;Jiaxin Yao;Jing Wen;Huaxiang Yin","doi":"10.1109/JEDS.2024.3465669","DOIUrl":"https://doi.org/10.1109/JEDS.2024.3465669","url":null,"abstract":"One-dimensionalcarbon nanotube field-effect transistors (CNFETs) have offered a solution for obtaining high transistor performance in a compatible low-temperature BEOL process, enabling monolithic 3D integration benefits for more functional circuits. Currently, CNT transistors need to further improve their performance with a more stable process and explore the most suitable circuit application scene. In this study, we successfully enhanced the performance of CNFETs through special Y2O3 film passivation and vacuum annealing processes. The on-state current of the optimized device was improved by \u0000<inline-formula> <tex-math>$36.6times $ </tex-math></inline-formula>\u0000 compared to the device without these processes. Besides, the subthreshold swing (SS) was notably reduced from 259 mV/dec to 215 mV/dec and the threshold voltage was decreased from 2.02 V to 1.79 V due to the reduction of the interface state. Meanwhile, the devices’ optoelectronic characteristics were significantly improved and exhibited a \u0000<inline-formula> <tex-math>$72times $ </tex-math></inline-formula>\u0000 increase in \u0000<inline-formula> <tex-math>$Delta $ </tex-math></inline-formula>\u0000 Ids under identical illumination. With an improved annealing process, the \u0000<inline-formula> <tex-math>$Delta $ </tex-math></inline-formula>\u0000 Ids were further increased to \u0000<inline-formula> <tex-math>$231times $ </tex-math></inline-formula>\u0000 compared to the original device because of the reduction of defects within the device. Finally, the tentative Morse code communication applications all by the optimized CNFETs were obtained. These technologies and functional implementations provided a promising approach for future 3D functional communication systems with CNT technology.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"12 ","pages":"889-897"},"PeriodicalIF":2.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10685345","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142408907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kr-Plasma Process for Conductance Control of MFSFET With FeND-HfO₂ Gate Insulator 等离子体克尔工艺用于带有 FeND-HfO2 栅极绝缘体的 MFSFET 的电导控制
IF 2 3区 工程技术
IEEE Journal of the Electron Devices Society Pub Date : 2024-09-18 DOI: 10.1109/JEDS.2024.3462930
S. Ohmi;M. Tanuma;J.W. Shin
{"title":"Kr-Plasma Process for Conductance Control of MFSFET With FeND-HfO₂ Gate Insulator","authors":"S. Ohmi;M. Tanuma;J.W. Shin","doi":"10.1109/JEDS.2024.3462930","DOIUrl":"10.1109/JEDS.2024.3462930","url":null,"abstract":"In this work, we have investigated the conductance control of the metal-ferroelectrics-Si field-effect transistor (MFSFET) utilizing 5 nm thick ferroelectric nondoped \u0000<inline-formula> <tex-math>$rm HfO_{2}$ </tex-math></inline-formula>\u0000 (FeND-HfO2) gate insulator. The Kr-plasma process is effective to decrease the plasma damage compared to the Ar-plasma process during the in-situ deposition of FeND-HfO2 and Pt gate electrode by RF-magnetron sputtering. The precise control such as less than 20 mV was realized which led to the conductance control for 10 states from 0 to \u0000<inline-formula> <tex-math>$0.6~mu $ </tex-math></inline-formula>\u0000S/\u0000<inline-formula> <tex-math>$mu $ </tex-math></inline-formula>\u0000m both for potentiation and depression operations with the input pulses of \u0000<inline-formula> <tex-math>$mathbf {pm 3}$ </tex-math></inline-formula>\u0000 V/100 ns.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"12 ","pages":"775-778"},"PeriodicalIF":2.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10682993","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fully Integrated GaN-on-Silicon Power-Rail ESD Clamp Circuit Without Transient Leakage Current During Normal Power-on Operation 完全集成的硅基氮化镓(GaN)电源轨静电放电钳位电路在正常上电操作期间不会产生瞬态泄漏电流
IF 2 3区 工程技术
IEEE Journal of the Electron Devices Society Pub Date : 2024-09-17 DOI: 10.1109/JEDS.2024.3462590
Wei-Cheng Wang;Ming-Dou Ker
{"title":"Fully Integrated GaN-on-Silicon Power-Rail ESD Clamp Circuit Without Transient Leakage Current During Normal Power-on Operation","authors":"Wei-Cheng Wang;Ming-Dou Ker","doi":"10.1109/JEDS.2024.3462590","DOIUrl":"10.1109/JEDS.2024.3462590","url":null,"abstract":"When more circuit functions are integrated into a single chip fabricated by the GaN-on-Silicon process, the need for on-chip electrostatic discharge (ESD) protection design becomes crucial to safeguard GaN integrated circuits (ICs). In this work, the power-rail ESD clamp circuit with gate-coupled design, fabricated in a GaN-on-Silicon process, was investigated. By increasing the gate-coupled capacitance, ESD level of the power-rail ESD clamp circuit can be significantly improved. However, the increased capacitance induces transient leakage current during normal power-on operation. To overcome this issue, a new detection circuit was proposed, which can differentiate between the ESD event and the normal power-on transient operation. Therefore, incorporating this new proposed detection circuit with the gate-coupled design allows for good ESD robustness, while also preventing transient leakage current during normal power-on condition.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"12 ","pages":"760-769"},"PeriodicalIF":2.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10681588","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combining Intelligence With Rules for Device Modeling: Approximating the Behavior of AlGaN/GaN HEMTs Using a Hybrid Neural Network and Fuzzy Logic Inference System 器件建模的智能与规则相结合:利用混合神经网络和模糊逻辑推理系统逼近 AlGaN/GaN HEMT 的行为
IF 2 3区 工程技术
IEEE Journal of the Electron Devices Society Pub Date : 2024-09-16 DOI: 10.1109/JEDS.2024.3461169
Ahmad Khusro;Saddam Husain;Mohammad S. Hashmi
{"title":"Combining Intelligence With Rules for Device Modeling: Approximating the Behavior of AlGaN/GaN HEMTs Using a Hybrid Neural Network and Fuzzy Logic Inference System","authors":"Ahmad Khusro;Saddam Husain;Mohammad S. Hashmi","doi":"10.1109/JEDS.2024.3461169","DOIUrl":"10.1109/JEDS.2024.3461169","url":null,"abstract":"This paper uses the Adaptive Neuro-Fuzzy Inference System (ANFIS) to investigate and propose a new alternative behavioral modeling technique for microwave power transistors. Utilizing measured I-V characteristics, associated parameters like transconductance \u0000<inline-formula> <tex-math>$(g_{text {m}})$ </tex-math></inline-formula>\u0000 and output conductance \u0000<inline-formula> <tex-math>$(g_{text {ds}})$ </tex-math></inline-formula>\u0000, etc., S-parameters characteristics, and RF performance parameters such as unity current gain frequency \u0000<inline-formula> <tex-math>$(f_{text {T}})$ </tex-math></inline-formula>\u0000, maximum unilateral gain frequency \u0000<inline-formula> <tex-math>$(f_{max })$ </tex-math></inline-formula>\u0000, ANFIS-based behavioral models are developed for Gallium Nitride (GaN) High Electron Mobility Transistors (HEMTs) and validated. The models have been developed using two distinct devices with dimensions of \u0000<inline-formula> <tex-math>$10times 200~mu m$ </tex-math></inline-formula>\u0000 and \u0000<inline-formula> <tex-math>$10times 250~mu m$ </tex-math></inline-formula>\u0000 for multi-bias conditions and over a broad frequency range (0.5 to 43.5 GHz). Subsequently, the proposed model performance is validated on devices with geometries of \u0000<inline-formula> <tex-math>$10times 220~mu m$ </tex-math></inline-formula>\u0000, \u0000<inline-formula> <tex-math>$4times 100~mu m$ </tex-math></inline-formula>\u0000, and \u0000<inline-formula> <tex-math>$2times 200~mu m$ </tex-math></inline-formula>\u0000 to examine the interpolation accuracy, extrapolation potential, and scalability. Here, ANFIS utilizes the subtractive clustering method to process the measurement characteristics by computing the clusters and opts for the best-performing model using error and number of fuzzy rules as criteria. The parameters involved in the fuzzy representation are trained using neural network algorithms, namely gradient-descent and least squares estimate. The proposed models are subsequently incorporated in a commercial circuit simulator (Keysight’s ADS) and the class-F power amplifier’s gain and stability characteristics are computed and studied.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"12 ","pages":"723-737"},"PeriodicalIF":2.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10680392","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Strain on Sub-3 nm Gate-All-Around CMOS Logic Circuit Performance Using a Neural Compact Modeling Approach 使用神经紧凑建模方法分析应变对 3 纳米以下栅极全方位 CMOS 逻辑电路性能的影响
IF 2 3区 工程技术
IEEE Journal of the Electron Devices Society Pub Date : 2024-09-13 DOI: 10.1109/JEDS.2024.3459872
Ji Hwan Lee;Kihwan Kim;Kyungjin Rim;Soogine Chong;Hyunbo Cho;Saeroonter Oh
{"title":"Impact of Strain on Sub-3 nm Gate-All-Around CMOS Logic Circuit Performance Using a Neural Compact Modeling Approach","authors":"Ji Hwan Lee;Kihwan Kim;Kyungjin Rim;Soogine Chong;Hyunbo Cho;Saeroonter Oh","doi":"10.1109/JEDS.2024.3459872","DOIUrl":"10.1109/JEDS.2024.3459872","url":null,"abstract":"Impact of strain of sub-3 nm gate-all-around (GAA) CMOS transistors on the circuit performance is evaluated using a neural compact model. The model was trained using 3D technology computer-aided design (TCAD) device simulation data of GAA field-effect transistors (FETs) subjected to both tensile and compressive strain in nMOS and pMOS devices. Strain was induced into the channel via lattice mismatch between the channel and source/drain epitaxial regions, as simulated by 3D TCAD process simulator. The transport models were calibrated against advanced Monte Carlo simulations to ensure accuracy. The resulting neural compact model demonstrated a close approximation to the original simulation results, achieving a minimal error of 1%. To assess the strain effect on circuit-level performance, SPICE simulations were conducted for a 5-stage ring oscillator and a 2-input NAND gate using the neural compact model. The propagation delay of the 5-stage ring oscillator improved from 3.60 ps to 2.85 ps when implementing strained GAA FETs. Also, strain enhanced the power-delay product of the 2-input NAND gate by 13.8% to 15.5%, depending on the input voltage sequence.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"12 ","pages":"770-774"},"PeriodicalIF":2.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10680295","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Parallel In-Memory Logic Array Based on Programmable Diodes 基于可编程二极管的新型并行内存逻辑阵列
IF 2 3区 工程技术
IEEE Journal of the Electron Devices Society Pub Date : 2024-09-10 DOI: 10.1109/JEDS.2024.3457021
Jiabao Ye;Junyu Zhu;Jifang Cao;Haoxiong Bi;Yong Ding;Bing Chen
{"title":"A Novel Parallel In-Memory Logic Array Based on Programmable Diodes","authors":"Jiabao Ye;Junyu Zhu;Jifang Cao;Haoxiong Bi;Yong Ding;Bing Chen","doi":"10.1109/JEDS.2024.3457021","DOIUrl":"10.1109/JEDS.2024.3457021","url":null,"abstract":"Computing-In-Memory (CIM) is widely applied in neural networks due to its unique capability to perform multiply-and-accumulate operations within a circuit array. This process directly obtains the current value through the product of voltage and conductance, accumulating it on the bit line, thus realizing storage and computing functionalities simultaneously within a single array. This significantly reduces the power consumption and time delay in data processing. Unfortunately, implementing general-purpose logic computations in large-scale memory arrays with CIM remains a challenge. This paper introduced a novel device concept, the programmable diode—a special type of memristor with a high switching window, ideally suited for memory arrays to reduce power consumption. A compact SPICE model was developed to enable circuit-level simulations in EDA tools. We also proposed a method to efficiently control the programmable diode for logic operations in memory arrays, and in this way, we constructed a parallel 8-bit full adder to verify the feasibility of the proposed method. Finally, based on the 8-bit full adder, we built a 5KB in-memory logic array capable of executing logic computations and simulated it using EDA tools. The simulation results demonstrated that the 5KB in-memory logic array can perform fundamental Boolean logic and arithmetic operations with high repeatability and parallelism, perfectly realizing the functionality of in-memory logic computation. Our work can provide a feasible scheme for realizing large-scale general logic computation systems based on CIM.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"12 ","pages":"738-744"},"PeriodicalIF":2.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10674001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142198876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wafer-Scale Monolithic Integration of LEDs with p-GaN-Depletion MOSFETs on a GaN LED Epitaxial Layer 晶圆级单片集成 LED 与 GaN LED 外延层上的 p-GaN 损耗 MOSFET
IF 2 3区 工程技术
IEEE Journal of the Electron Devices Society Pub Date : 2024-09-06 DOI: 10.1109/JEDS.2024.3455256
Boseong Son;Huijin Kim;Young-Woong Lee;Purusottam Reddy Bommireddy;Si-Hyun Park
{"title":"Wafer-Scale Monolithic Integration of LEDs with p-GaN-Depletion MOSFETs on a GaN LED Epitaxial Layer","authors":"Boseong Son;Huijin Kim;Young-Woong Lee;Purusottam Reddy Bommireddy;Si-Hyun Park","doi":"10.1109/JEDS.2024.3455256","DOIUrl":"10.1109/JEDS.2024.3455256","url":null,"abstract":"We developed a monolithically integrated device consisting of a single GaN LED and two p-GaN-depletion MOSFETs on a GaN LED epitaxial layer. The p-GaN-depletion MOSFETs exhibited a subthreshold slope of 1 V/decade and a threshold voltage of –2 V, whereas the LED exhibited a forward voltage of 3.5 V at 1 mA and an electroluminescence peak of 445 nm. The device could be controlled by the scan voltage, with \u0000<inline-formula> <tex-math>$V_{DD}$ </tex-math></inline-formula>\u0000 ranging from 1 to 2 V, and cut off the total current with an applied scan voltage greater than 3 V. This work represents an important step towards the monolithic integration of LED and transistors for use in active-matrix micro-LED displays.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"12 ","pages":"905-911"},"PeriodicalIF":2.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10668404","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信