{"title":"Enhanced Single-Diode Solar Cell Model: Analytical Solutions Using Lambert W Function and Circuit Innovations","authors":"Martin Ćalasan;Snežana Vujošević;Kristina Bakić","doi":"10.1109/JEDS.2025.3575706","DOIUrl":null,"url":null,"abstract":"This paper highlights significant advancements in the creation and enhancement of equivalent circuit models for solar cells. First, two novel configurations are proposed to enhance the classic single-diode model: one adds a diode between the terminal connections, while the other inserts a diode and resistor in series between the same terminals. Second, original analytical expressions for the current-voltage (I-V) characteristics of each proposed circuit are derived using the Lambert W function. Third, the performance of these models is rigorously evaluated on a variety of solar cells under diverse environmental conditions. Results demonstrated the models’ accuracy and robustness, with Root Mean Square Error (RMSE) analysis showing superior alignment between simulated and experimental I-V curves compared to existing single-, double-, and triple-diode solar cell models from the literature. Finally, the proposed approach enhances the mathematical precision in modeling solar cell behavior and provides a reliable framework for optimizing solar energy systems, contributing to improved performance and efficiency in practical applications.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"13 ","pages":"501-509"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11020651","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11020651/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper highlights significant advancements in the creation and enhancement of equivalent circuit models for solar cells. First, two novel configurations are proposed to enhance the classic single-diode model: one adds a diode between the terminal connections, while the other inserts a diode and resistor in series between the same terminals. Second, original analytical expressions for the current-voltage (I-V) characteristics of each proposed circuit are derived using the Lambert W function. Third, the performance of these models is rigorously evaluated on a variety of solar cells under diverse environmental conditions. Results demonstrated the models’ accuracy and robustness, with Root Mean Square Error (RMSE) analysis showing superior alignment between simulated and experimental I-V curves compared to existing single-, double-, and triple-diode solar cell models from the literature. Finally, the proposed approach enhances the mathematical precision in modeling solar cell behavior and provides a reliable framework for optimizing solar energy systems, contributing to improved performance and efficiency in practical applications.
期刊介绍:
The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.