Reliability of Gap-Type Thin Film Transistors Under Low Illumination for Imaging Sensing Applications

IF 2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Ya-Hsiang Tai;Chih-Chung Tu;Chi-Hao Lin;Chi-Fan Lu
{"title":"Reliability of Gap-Type Thin Film Transistors Under Low Illumination for Imaging Sensing Applications","authors":"Ya-Hsiang Tai;Chih-Chung Tu;Chi-Hao Lin;Chi-Fan Lu","doi":"10.1109/JEDS.2025.3578547","DOIUrl":null,"url":null,"abstract":"In large-area image sensing applications, such as under-display fingerprint sensors, amorphous silicon (a-Si) gap-type thin-film transistors (TFTs) are favored due to their simple fabrication process and high sensing current. These applications typically involve device operation under low-light illumination conditions. Despite these advantages, the recovery behavior of performance parameters after exposure to stress factors, including bias stress and photo-stress, has not been comprehensively explored, particularly in relation to reliability recovery. This study systematically investigates the impact of fixed-bias and pulsed-stress operations under low-light conditions. The experimental findings are further analyzed using Technology Computer-Aided Design (TCAD) simulations to elucidate the underlying mechanisms. Results indicate that long-term bias stress induces significant variations in the photocurrent characteristics of the devices. However, the introduction of pulsed operations in sensing applications markedly enhances the operational lifetime of the devices, offering a promising pathway to improving their reliability.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"13 ","pages":"524-531"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11030751","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11030751/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In large-area image sensing applications, such as under-display fingerprint sensors, amorphous silicon (a-Si) gap-type thin-film transistors (TFTs) are favored due to their simple fabrication process and high sensing current. These applications typically involve device operation under low-light illumination conditions. Despite these advantages, the recovery behavior of performance parameters after exposure to stress factors, including bias stress and photo-stress, has not been comprehensively explored, particularly in relation to reliability recovery. This study systematically investigates the impact of fixed-bias and pulsed-stress operations under low-light conditions. The experimental findings are further analyzed using Technology Computer-Aided Design (TCAD) simulations to elucidate the underlying mechanisms. Results indicate that long-term bias stress induces significant variations in the photocurrent characteristics of the devices. However, the introduction of pulsed operations in sensing applications markedly enhances the operational lifetime of the devices, offering a promising pathway to improving their reliability.
低照度下成像传感用间隙型薄膜晶体管的可靠性研究
在大面积图像传感应用中,非晶硅(a-Si)隙型薄膜晶体管(TFTs)因其制作工艺简单和传感电流大而受到青睐。这些应用通常涉及在低光照明条件下的设备操作。尽管有这些优点,但暴露于应力因素(包括偏置应力和光应力)后性能参数的恢复行为尚未得到全面探索,特别是与可靠性恢复有关。本研究系统地研究了在弱光条件下固定偏置和脉冲应力操作的影响。利用计算机辅助设计(TCAD)模拟技术对实验结果进行了进一步分析,以阐明潜在的机制。结果表明,长期偏置应力会引起器件光电流特性的显著变化。然而,在传感应用中引入脉冲操作显着提高了器件的使用寿命,为提高其可靠性提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of the Electron Devices Society
IEEE Journal of the Electron Devices Society Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
5.20
自引率
4.30%
发文量
124
审稿时长
9 weeks
期刊介绍: The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信