Muhammad Mainul Islam;Mohammad Adnaan;Sou-Chi Chang;Hai Li;Ian A. Young;Azad Naeemi
{"title":"用多域相场法研究反铁电电容器的开关动力学","authors":"Muhammad Mainul Islam;Mohammad Adnaan;Sou-Chi Chang;Hai Li;Ian A. Young;Azad Naeemi","doi":"10.1109/JEDS.2025.3564212","DOIUrl":null,"url":null,"abstract":"Here, we present a compact model based on multidomain phase-field approach that can capture the hysteresis loop and the transient negative capacitance (NC) regions in Metal-Antiferroelectric-Metal structures. The model solves time-dependent Ginzburg-Landau (TDGL) and Poisson equation self-consistently to evaluate the polarization and potential distribution, respectively. We also discuss the significance of a dynamic kinetic coefficient to accurately capture the NC effect in antiferroelectric (AFE) capacitors. The proposed model adeptly captures all four transient NC regions (two antiferroelectric to ferroelectric transitions and two ferroelectric to antiferroelectric transitions) observed during a full switching cycle of an antiferroelectric capacitor.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"13 ","pages":"422-426"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10977732","citationCount":"0","resultStr":"{\"title\":\"Investigating the Switching Dynamics of Antiferroelectric Capacitor Using Multidomain Phase-Field Approach\",\"authors\":\"Muhammad Mainul Islam;Mohammad Adnaan;Sou-Chi Chang;Hai Li;Ian A. Young;Azad Naeemi\",\"doi\":\"10.1109/JEDS.2025.3564212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here, we present a compact model based on multidomain phase-field approach that can capture the hysteresis loop and the transient negative capacitance (NC) regions in Metal-Antiferroelectric-Metal structures. The model solves time-dependent Ginzburg-Landau (TDGL) and Poisson equation self-consistently to evaluate the polarization and potential distribution, respectively. We also discuss the significance of a dynamic kinetic coefficient to accurately capture the NC effect in antiferroelectric (AFE) capacitors. The proposed model adeptly captures all four transient NC regions (two antiferroelectric to ferroelectric transitions and two ferroelectric to antiferroelectric transitions) observed during a full switching cycle of an antiferroelectric capacitor.\",\"PeriodicalId\":13210,\"journal\":{\"name\":\"IEEE Journal of the Electron Devices Society\",\"volume\":\"13 \",\"pages\":\"422-426\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10977732\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of the Electron Devices Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10977732/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10977732/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Investigating the Switching Dynamics of Antiferroelectric Capacitor Using Multidomain Phase-Field Approach
Here, we present a compact model based on multidomain phase-field approach that can capture the hysteresis loop and the transient negative capacitance (NC) regions in Metal-Antiferroelectric-Metal structures. The model solves time-dependent Ginzburg-Landau (TDGL) and Poisson equation self-consistently to evaluate the polarization and potential distribution, respectively. We also discuss the significance of a dynamic kinetic coefficient to accurately capture the NC effect in antiferroelectric (AFE) capacitors. The proposed model adeptly captures all four transient NC regions (two antiferroelectric to ferroelectric transitions and two ferroelectric to antiferroelectric transitions) observed during a full switching cycle of an antiferroelectric capacitor.
期刊介绍:
The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.