Communications on Pure and Applied Mathematics最新文献

筛选
英文 中文
Thermodynamic limit of the first Lee-Yang zero 热力学极限第一李杨零
IF 3 1区 数学
Communications on Pure and Applied Mathematics Pub Date : 2023-09-11 DOI: 10.1002/cpa.22159
Jianping Jiang, Charles M. Newman
{"title":"Thermodynamic limit of the first Lee-Yang zero","authors":"Jianping Jiang,&nbsp;Charles M. Newman","doi":"10.1002/cpa.22159","DOIUrl":"10.1002/cpa.22159","url":null,"abstract":"<p>We complete the verification of the 1952 Yang and Lee proposal that thermodynamic singularities are exactly the limits in <math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>${mathbb {R}}$</annotation>\u0000 </semantics></math> of finite-volume singularities in <math>\u0000 <semantics>\u0000 <mi>C</mi>\u0000 <annotation>${mathbb {C}}$</annotation>\u0000 </semantics></math>. For the Ising model defined on a finite <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Λ</mi>\u0000 <mo>⊂</mo>\u0000 <msup>\u0000 <mi>Z</mi>\u0000 <mi>d</mi>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$Lambda subset mathbb {Z}^d$</annotation>\u0000 </semantics></math> at inverse temperature <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>β</mi>\u0000 <mo>≥</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$beta ge 0$</annotation>\u0000 </semantics></math> and external field <i>h</i>, let <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>α</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>Λ</mi>\u0000 <mo>,</mo>\u0000 <mi>β</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$alpha _1(Lambda ,beta )$</annotation>\u0000 </semantics></math> be the modulus of the first zero (that closest to the origin) of its partition function (in the variable <i>h</i>). We prove that <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>α</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>Λ</mi>\u0000 <mo>,</mo>\u0000 <mi>β</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$alpha _1(Lambda ,beta )$</annotation>\u0000 </semantics></math> decreases to <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>α</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msup>\u0000 <mi>Z</mi>\u0000 <mi>d</mi>\u0000 </msup>\u0000 <mo>,</mo>\u0000 <mi>β</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$alpha _1(mathbb {Z}^d,beta )$</annotation>\u0000 </semantics></math> as Λ increases to <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>Z</mi>\u0000 ","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136024171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Fermi isospectrality for discrete periodic Schrödinger operators 离散周期Schrödinger算符的费米等谱性
IF 3 1区 数学
Communications on Pure and Applied Mathematics Pub Date : 2023-09-10 DOI: 10.1002/cpa.22161
Wencai Liu
{"title":"Fermi isospectrality for discrete periodic Schrödinger operators","authors":"Wencai Liu","doi":"10.1002/cpa.22161","DOIUrl":"10.1002/cpa.22161","url":null,"abstract":"<p>Let <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Γ</mi>\u0000 <mo>=</mo>\u0000 <msub>\u0000 <mi>q</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mi>Z</mi>\u0000 <mi>⊕</mi>\u0000 <msub>\u0000 <mi>q</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <mi>Z</mi>\u0000 <mi>⊕</mi>\u0000 <mtext>…</mtext>\u0000 <mi>⊕</mi>\u0000 <msub>\u0000 <mi>q</mi>\u0000 <mi>d</mi>\u0000 </msub>\u0000 <mi>Z</mi>\u0000 </mrow>\u0000 <annotation>$Gamma =q_1mathbb {Z}oplus q_2 mathbb {Z}oplus ldots oplus q_dmathbb {Z}$</annotation>\u0000 </semantics></math>, where <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>q</mi>\u0000 <mi>l</mi>\u0000 </msub>\u0000 <mo>∈</mo>\u0000 <msub>\u0000 <mi>Z</mi>\u0000 <mo>+</mo>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$q_lin mathbb {Z}_+$</annotation>\u0000 </semantics></math>, <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>l</mi>\u0000 <mo>=</mo>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mn>2</mn>\u0000 <mo>,</mo>\u0000 <mtext>…</mtext>\u0000 <mo>,</mo>\u0000 <mi>d</mi>\u0000 </mrow>\u0000 <annotation>$l=1,2,ldots ,d$</annotation>\u0000 </semantics></math>, are pairwise coprime. Let <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Δ</mi>\u0000 <mo>+</mo>\u0000 <mi>V</mi>\u0000 </mrow>\u0000 <annotation>$Delta +V$</annotation>\u0000 </semantics></math> be the discrete Schrödinger operator, where Δ is the discrete Laplacian on <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>Z</mi>\u0000 <mi>d</mi>\u0000 </msup>\u0000 <annotation>$mathbb {Z}^d$</annotation>\u0000 </semantics></math> and the potential <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>V</mi>\u0000 <mo>:</mo>\u0000 <msup>\u0000 <mi>Z</mi>\u0000 <mi>d</mi>\u0000 </msup>\u0000 <mo>→</mo>\u0000 <mi>C</mi>\u0000 </mrow>\u0000 <annotation>$V:mathbb {Z}^drightarrow mathbb {C}$</annotation>\u0000 </semantics></math> is Γ-periodic. We prove three rigidity theorems for discrete periodic Schrödinger operators in any dimension <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <mo>≥</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 ","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136072215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
A scaling limit of the parabolic Anderson model with exclusion interaction 具有排斥相互作用的抛物型Anderson模型的标度极限
IF 3 1区 数学
Communications on Pure and Applied Mathematics Pub Date : 2023-09-10 DOI: 10.1002/cpa.22145
Dirk Erhard, Martin Hairer
{"title":"A scaling limit of the parabolic Anderson model with exclusion interaction","authors":"Dirk Erhard,&nbsp;Martin Hairer","doi":"10.1002/cpa.22145","DOIUrl":"10.1002/cpa.22145","url":null,"abstract":"<p>We consider the (discrete) parabolic Anderson model <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>∂</mi>\u0000 <mi>u</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>t</mi>\u0000 <mo>,</mo>\u0000 <mi>x</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>/</mo>\u0000 <mi>∂</mi>\u0000 <mi>t</mi>\u0000 <mo>=</mo>\u0000 <mi>Δ</mi>\u0000 <mi>u</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>t</mi>\u0000 <mo>,</mo>\u0000 <mi>x</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>+</mo>\u0000 <msub>\u0000 <mi>ξ</mi>\u0000 <mi>t</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>x</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mi>u</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>t</mi>\u0000 <mo>,</mo>\u0000 <mi>x</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$partial u(t,x)/partial t=Delta u(t,x) +xi _t(x) u(t,x)$</annotation>\u0000 </semantics></math>, <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 <mo>≥</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$tge 0$</annotation>\u0000 </semantics></math>, <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>x</mi>\u0000 <mo>∈</mo>\u0000 <msup>\u0000 <mi>Z</mi>\u0000 <mi>d</mi>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$xin mathbb {Z}^d$</annotation>\u0000 </semantics></math>, where the ξ-field is <math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$mathbb {R}$</annotation>\u0000 </semantics></math>-valued and plays the role of a dynamic random environment, and Δ is the discrete Laplacian. We focus on the case in which ξ is given by a properly rescaled symmetric simple exclusion process under which it converges to an Ornstein–Uhlenbeck process. Scaling the Laplacian diffusively and restricting ourselves to a torus, we show that in dimension <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <mo>=</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$d=3$</annotation>\u0000 </semantics></math> upon considering a suitably renormalised version of the above equation, the sequence of solutions converges in law. As a by-product of our main result we obtain precise asymptotics for the survival probability of a si","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136071502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Pure gravity traveling quasi-periodic water waves with constant vorticity 具有恒定涡度的纯重力行准周期水波
IF 3 1区 数学
Communications on Pure and Applied Mathematics Pub Date : 2023-09-09 DOI: 10.1002/cpa.22143
Massimiliano Berti, Luca Franzoi, Alberto Maspero
{"title":"Pure gravity traveling quasi-periodic water waves with constant vorticity","authors":"Massimiliano Berti,&nbsp;Luca Franzoi,&nbsp;Alberto Maspero","doi":"10.1002/cpa.22143","DOIUrl":"10.1002/cpa.22143","url":null,"abstract":"<p>We prove the existence of small amplitude time quasi-periodic solutions of the <i>pure gravity</i> water waves equations  with <i>constant vorticity</i>, for a bidimensional fluid over a flat bottom delimited by a space periodic free interface. Using a Nash-Moser implicit function iterative scheme we construct traveling nonlinear waves which pass through each other slightly deforming and retaining forever a quasiperiodic structure. These solutions exist for any fixed value of depth and gravity and restricting the vorticity parameter to a Borel set of asymptotically full Lebesgue measure.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136108415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 23
Critical local well-posedness for the fully nonlinear Peskin problem 全非线性Peskin问题的临界局部适定性
IF 3 1区 数学
Communications on Pure and Applied Mathematics Pub Date : 2023-09-08 DOI: 10.1002/cpa.22139
Stephen Cameron, Robert M. Strain
{"title":"Critical local well-posedness for the fully nonlinear Peskin problem","authors":"Stephen Cameron,&nbsp;Robert M. Strain","doi":"10.1002/cpa.22139","DOIUrl":"10.1002/cpa.22139","url":null,"abstract":"<p>We study the problem where a one-dimensional elastic string is immersed in a two-dimensional steady Stokes fluid. This is known as the Stokes immersed boundary problem and also as the Peskin problem. We consider the case with equal viscosities and with a fully non-linear tension law; this model has been called the fully nonlinear Peskin problem. In this case we prove local in time wellposedness for arbitrary initial data in the scaling critical Besov space <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mover>\u0000 <mi>B</mi>\u0000 <mo>̇</mo>\u0000 </mover>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mo>,</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <mrow>\u0000 <mn>3</mn>\u0000 <mo>/</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 </msubsup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>T</mi>\u0000 <mo>;</mo>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$dot{B}^{3/2}_{2,1}(mathbb {T}; mathbb {R}^2)$</annotation>\u0000 </semantics></math>. We additionally prove the optimal higher order smoothing effects for the solution. To prove this result we derive a new formulation of the boundary integral equation that describes the parametrization of the string, and we crucially utilize a new cancelation structure.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43194065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Constrained deformations of positive scalar curvature metrics, II 正标量曲率度量的约束变形,2
IF 3 1区 数学
Communications on Pure and Applied Mathematics Pub Date : 2023-09-07 DOI: 10.1002/cpa.22153
Alessandro Carlotto, Chao Li
{"title":"Constrained deformations of positive scalar curvature metrics, II","authors":"Alessandro Carlotto,&nbsp;Chao Li","doi":"10.1002/cpa.22153","DOIUrl":"10.1002/cpa.22153","url":null,"abstract":"<p>We prove that various spaces of constrained positive scalar curvature metrics on compact three-manifolds with boundary, when not empty, are contractible. The constraints we mostly focus on are given in terms of local conditions on the mean curvature of the boundary, and our treatment includes both the mean-convex and the minimal case. We then discuss the implications of these results on the topology of different subspaces of asymptotically flat initial data sets for the Einstein field equations in general relativity.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22153","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42125200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Convergence of the self-dual U(1)-Yang–Mills–Higgs energies to the ( n − 2 ) $(n-2)$ -area functional 自对偶U(1)‐Yang-Mills-Higgs能量收敛到(n−2)$(n-2)$‐面积泛函
IF 3 1区 数学
Communications on Pure and Applied Mathematics Pub Date : 2023-09-07 DOI: 10.1002/cpa.22150
Davide Parise, Alessandro Pigati, Daniel Stern
{"title":"Convergence of the self-dual U(1)-Yang–Mills–Higgs energies to the \u0000 \u0000 \u0000 (\u0000 n\u0000 −\u0000 2\u0000 )\u0000 \u0000 $(n-2)$\u0000 -area functional","authors":"Davide Parise,&nbsp;Alessandro Pigati,&nbsp;Daniel Stern","doi":"10.1002/cpa.22150","DOIUrl":"10.1002/cpa.22150","url":null,"abstract":"<p>Given a hermitian line bundle <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>L</mi>\u0000 <mo>→</mo>\u0000 <mi>M</mi>\u0000 </mrow>\u0000 <annotation>$Lrightarrow M$</annotation>\u0000 </semantics></math> on a closed Riemannian manifold <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msup>\u0000 <mi>M</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <mo>,</mo>\u0000 <mi>g</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(M^n,g)$</annotation>\u0000 </semantics></math>, the self-dual Yang–Mills–Higgs energies are a natural family of functionals\u0000\u0000 </p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47563774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
C 2 , α $C^{2,alpha }$ regularity of free boundaries in optimal transportation 最优运输中自由边界的C2,α$C^{2,alpha}$正则性
IF 3 1区 数学
Communications on Pure and Applied Mathematics Pub Date : 2023-09-07 DOI: 10.1002/cpa.22151
Shibing Chen, Jiakun Liu, Xu-Jia Wang
{"title":"C\u0000 \u0000 2\u0000 ,\u0000 α\u0000 \u0000 \u0000 $C^{2,alpha }$\u0000 regularity of free boundaries in optimal transportation","authors":"Shibing Chen,&nbsp;Jiakun Liu,&nbsp;Xu-Jia Wang","doi":"10.1002/cpa.22151","DOIUrl":"10.1002/cpa.22151","url":null,"abstract":"<p>The regularity of the free boundary in optimal transportation is equivalent to that of the potential function along the free boundary. By establishing new geometric estimates of the free boundary and studying the second boundary value problem of the Monge-Ampère equation, we obtain the <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>C</mi>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mo>,</mo>\u0000 <mi>α</mi>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$C^{2,alpha }$</annotation>\u0000 </semantics></math> regularity of the potential function as well as that of the free boundary, thereby resolve an open problem raised by Caffarelli and McCann.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48320720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prescribed curvature measure problem in hyperbolic space 双曲空间中的曲率测度问题
IF 3 1区 数学
Communications on Pure and Applied Mathematics Pub Date : 2023-09-07 DOI: 10.1002/cpa.22160
Fengrui Yang
{"title":"Prescribed curvature measure problem in hyperbolic space","authors":"Fengrui Yang","doi":"10.1002/cpa.22160","DOIUrl":"10.1002/cpa.22160","url":null,"abstract":"<p>The problem of the prescribed curvature measure is one of the important problems in differential geometry and nonlinear partial differential equations. In this paper, we consider the prescribed curvature measure problem in the hyperbolic space. We obtain the existence of star-shaped k-convex bodies with prescribed (n-k)-th curvature measures <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>k</mi>\u0000 <mo>&lt;</mo>\u0000 <mi>n</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(k&lt;n)$</annotation>\u0000 </semantics></math> by establishing crucial <i>C</i><sup>2</sup> regularity estimates for solutions to the corresponding fully nonlinear PDE in the hyperbolic space.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48078410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Free boundary partial regularity in the thin obstacle problem 薄障碍问题的自由边界部分正则性
IF 3 1区 数学
Communications on Pure and Applied Mathematics Pub Date : 2023-09-05 DOI: 10.1002/cpa.22152
Federico Franceschini, Joaquim Serra
{"title":"Free boundary partial regularity in the thin obstacle problem","authors":"Federico Franceschini,&nbsp;Joaquim Serra","doi":"10.1002/cpa.22152","DOIUrl":"10.1002/cpa.22152","url":null,"abstract":"<p>For the thin obstacle problem in <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <annotation>$mathbb {R}^n$</annotation>\u0000 </semantics></math>, <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>≥</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$nge 2$</annotation>\u0000 </semantics></math>, we prove that at <i>all</i> free boundary points, with the exception of a <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>−</mo>\u0000 <mn>3</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(n-3)$</annotation>\u0000 </semantics></math>-dimensional set, the solution differs from its blow-up by higher order corrections. This expansion entails a <i>C</i><sup>1, 1</sup>-type free boundary regularity result, up to a codimension 3 set.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43420067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信