Stationary measure for the open KPZ equation

IF 3.1 1区 数学 Q1 MATHEMATICS
Ivan Corwin, Alisa Knizel
{"title":"Stationary measure for the open KPZ equation","authors":"Ivan Corwin,&nbsp;Alisa Knizel","doi":"10.1002/cpa.22174","DOIUrl":null,"url":null,"abstract":"<p>We provide the first construction of stationary measures for the open KPZ equation on the spatial interval [0,1] with general inhomogeneous Neumann boundary conditions at 0 and 1 depending on real parameters <i>u</i> and <i>v</i>, respectively. When <math>\n <semantics>\n <mrow>\n <mi>u</mi>\n <mo>+</mo>\n <mi>v</mi>\n <mo>≥</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$u+v\\ge 0$</annotation>\n </semantics></math>, we uniquely characterize the constructed stationary measures through their multipoint Laplace transform, which we prove is given in terms of a stochastic process that we call the continuous dual Hahn process. Our work relies on asymptotic analysis of Bryc and Wesołowski's Askey–Wilson process formulas for the open ASEP stationary measure (which in turn arise from Uchiyama, Sasamoto and Wadati's Askey-Wilson Jacobi matrix representation of Derrida et al.'s matrix product ansatz) in conjunction with Corwin and Shen's proof that open ASEP converges to open KPZ under weakly asymmetric scaling.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 4","pages":"2183-2267"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22174","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We provide the first construction of stationary measures for the open KPZ equation on the spatial interval [0,1] with general inhomogeneous Neumann boundary conditions at 0 and 1 depending on real parameters u and v, respectively. When u + v 0 $u+v\ge 0$ , we uniquely characterize the constructed stationary measures through their multipoint Laplace transform, which we prove is given in terms of a stochastic process that we call the continuous dual Hahn process. Our work relies on asymptotic analysis of Bryc and Wesołowski's Askey–Wilson process formulas for the open ASEP stationary measure (which in turn arise from Uchiyama, Sasamoto and Wadati's Askey-Wilson Jacobi matrix representation of Derrida et al.'s matrix product ansatz) in conjunction with Corwin and Shen's proof that open ASEP converges to open KPZ under weakly asymmetric scaling.

开KPZ方程的平稳测度
我们给出了空间区间[0,1]上开KPZ方程的平稳测度的第一个构造,该方程的一般非齐次Neumann边界条件分别为0和1,取决于实参数u和v。当u+v≥0$u+v\ge 0$时,我们通过它们的多点拉普拉斯变换唯一地刻画了构造的平稳测度,我们证明了它是根据一个随机过程给出的,我们称之为连续对偶Hahn过程。我们的工作依赖于Bryc和Wesołowski的开放ASEP平稳测度的Askey–Wilson过程公式的渐近分析(这反过来又源于Derrida等人的矩阵乘积ansatz的Uchiyama、Sasamoto和Wadati的Askey Wilson Jacobi矩阵表示),以及Corwin和Shen的证明,即开放ASEP在弱不对称标度下收敛于开放KPZ。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信