Magnetic helicity, weak solutions and relaxation of ideal MHD

IF 3.1 1区 数学 Q1 MATHEMATICS
Daniel Faraco, Sauli Lindberg, László Székelyhidi Jr.
{"title":"Magnetic helicity, weak solutions and relaxation of ideal MHD","authors":"Daniel Faraco,&nbsp;Sauli Lindberg,&nbsp;László Székelyhidi Jr.","doi":"10.1002/cpa.22168","DOIUrl":null,"url":null,"abstract":"<p>We revisit the issue of conservation of magnetic helicity and the Woltjer-Taylor relaxation theory in magnetohydrodynamics (MHD) in the context of weak solutions. We introduce a relaxed system for the ideal MHD system, which decouples the effects of hydrodynamic turbulence such as the appearance of a Reynolds stress term from the magnetic helicity conservation in a manner consistent with observations in plasma turbulence. As by-products we answer two open questions in the field: We show the sharpness of the <i>L</i><sup>3</sup> integrability condition for magnetic helicity conservation and provide turbulent bounded solutions for ideal MHD dissipating energy and cross helicity but with (arbitrary) constant magnetic helicity.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 4","pages":"2387-2412"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22168","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22168","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We revisit the issue of conservation of magnetic helicity and the Woltjer-Taylor relaxation theory in magnetohydrodynamics (MHD) in the context of weak solutions. We introduce a relaxed system for the ideal MHD system, which decouples the effects of hydrodynamic turbulence such as the appearance of a Reynolds stress term from the magnetic helicity conservation in a manner consistent with observations in plasma turbulence. As by-products we answer two open questions in the field: We show the sharpness of the L3 integrability condition for magnetic helicity conservation and provide turbulent bounded solutions for ideal MHD dissipating energy and cross helicity but with (arbitrary) constant magnetic helicity.

Abstract Image

理想磁流体力学的磁螺旋度、弱解和弛豫
在弱解的背景下,我们重新讨论了磁流体力学中的磁螺旋度守恒和Woltjer-Taylor弛豫理论。我们为理想MHD系统引入了一个松弛系统,该系统以与等离子体湍流中的观测结果一致的方式,将流体动力学湍流的影响(如雷诺应力项的出现)与磁螺旋度守恒解耦。作为副产品,我们回答了该领域中的两个悬而未决的问题:我们展示了磁螺旋度守恒的L3可积性条件的尖锐性,并为理想MHD耗散能量和交叉螺旋度但具有(任意)恒定磁螺旋度提供了湍流有界解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信