{"title":"A scaling limit of the parabolic Anderson model with exclusion interaction","authors":"Dirk Erhard, Martin Hairer","doi":"10.1002/cpa.22145","DOIUrl":"10.1002/cpa.22145","url":null,"abstract":"<p>We consider the (discrete) parabolic Anderson model <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>∂</mi>\u0000 <mi>u</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>t</mi>\u0000 <mo>,</mo>\u0000 <mi>x</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>/</mo>\u0000 <mi>∂</mi>\u0000 <mi>t</mi>\u0000 <mo>=</mo>\u0000 <mi>Δ</mi>\u0000 <mi>u</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>t</mi>\u0000 <mo>,</mo>\u0000 <mi>x</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>+</mo>\u0000 <msub>\u0000 <mi>ξ</mi>\u0000 <mi>t</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>x</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mi>u</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>t</mi>\u0000 <mo>,</mo>\u0000 <mi>x</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$partial u(t,x)/partial t=Delta u(t,x) +xi _t(x) u(t,x)$</annotation>\u0000 </semantics></math>, <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 <mo>≥</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$tge 0$</annotation>\u0000 </semantics></math>, <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>x</mi>\u0000 <mo>∈</mo>\u0000 <msup>\u0000 <mi>Z</mi>\u0000 <mi>d</mi>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$xin mathbb {Z}^d$</annotation>\u0000 </semantics></math>, where the ξ-field is <math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$mathbb {R}$</annotation>\u0000 </semantics></math>-valued and plays the role of a dynamic random environment, and Δ is the discrete Laplacian. We focus on the case in which ξ is given by a properly rescaled symmetric simple exclusion process under which it converges to an Ornstein–Uhlenbeck process. Scaling the Laplacian diffusively and restricting ourselves to a torus, we show that in dimension <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <mo>=</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$d=3$</annotation>\u0000 </semantics></math> upon considering a suitably renormalised version of the above equation, the sequence of solutions converges in law. As a by-product of our main result we obtain precise asymptotics for the survival probability of a si","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 2","pages":"1065-1125"},"PeriodicalIF":3.0,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136071502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pure gravity traveling quasi-periodic water waves with constant vorticity","authors":"Massimiliano Berti, Luca Franzoi, Alberto Maspero","doi":"10.1002/cpa.22143","DOIUrl":"10.1002/cpa.22143","url":null,"abstract":"<p>We prove the existence of small amplitude time quasi-periodic solutions of the <i>pure gravity</i> water waves equations with <i>constant vorticity</i>, for a bidimensional fluid over a flat bottom delimited by a space periodic free interface. Using a Nash-Moser implicit function iterative scheme we construct traveling nonlinear waves which pass through each other slightly deforming and retaining forever a quasiperiodic structure. These solutions exist for any fixed value of depth and gravity and restricting the vorticity parameter to a Borel set of asymptotically full Lebesgue measure.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 2","pages":"990-1064"},"PeriodicalIF":3.0,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136108415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Critical local well-posedness for the fully nonlinear Peskin problem","authors":"Stephen Cameron, Robert M. Strain","doi":"10.1002/cpa.22139","DOIUrl":"10.1002/cpa.22139","url":null,"abstract":"<p>We study the problem where a one-dimensional elastic string is immersed in a two-dimensional steady Stokes fluid. This is known as the Stokes immersed boundary problem and also as the Peskin problem. We consider the case with equal viscosities and with a fully non-linear tension law; this model has been called the fully nonlinear Peskin problem. In this case we prove local in time wellposedness for arbitrary initial data in the scaling critical Besov space <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mover>\u0000 <mi>B</mi>\u0000 <mo>̇</mo>\u0000 </mover>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mo>,</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <mrow>\u0000 <mn>3</mn>\u0000 <mo>/</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 </msubsup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>T</mi>\u0000 <mo>;</mo>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$dot{B}^{3/2}_{2,1}(mathbb {T}; mathbb {R}^2)$</annotation>\u0000 </semantics></math>. We additionally prove the optimal higher order smoothing effects for the solution. To prove this result we derive a new formulation of the boundary integral equation that describes the parametrization of the string, and we crucially utilize a new cancelation structure.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 2","pages":"901-989"},"PeriodicalIF":3.0,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43194065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Constrained deformations of positive scalar curvature metrics, II","authors":"Alessandro Carlotto, Chao Li","doi":"10.1002/cpa.22153","DOIUrl":"10.1002/cpa.22153","url":null,"abstract":"<p>We prove that various spaces of constrained positive scalar curvature metrics on compact three-manifolds with boundary, when not empty, are contractible. The constraints we mostly focus on are given in terms of local conditions on the mean curvature of the boundary, and our treatment includes both the mean-convex and the minimal case. We then discuss the implications of these results on the topology of different subspaces of asymptotically flat initial data sets for the Einstein field equations in general relativity.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 1","pages":"795-862"},"PeriodicalIF":3.0,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22153","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42125200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Convergence of the self-dual U(1)-Yang–Mills–Higgs energies to the \u0000 \u0000 \u0000 (\u0000 n\u0000 −\u0000 2\u0000 )\u0000 \u0000 $(n-2)$\u0000 -area functional","authors":"Davide Parise, Alessandro Pigati, Daniel Stern","doi":"10.1002/cpa.22150","DOIUrl":"10.1002/cpa.22150","url":null,"abstract":"<p>Given a hermitian line bundle <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>L</mi>\u0000 <mo>→</mo>\u0000 <mi>M</mi>\u0000 </mrow>\u0000 <annotation>$Lrightarrow M$</annotation>\u0000 </semantics></math> on a closed Riemannian manifold <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msup>\u0000 <mi>M</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <mo>,</mo>\u0000 <mi>g</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(M^n,g)$</annotation>\u0000 </semantics></math>, the self-dual Yang–Mills–Higgs energies are a natural family of functionals\u0000\u0000 </p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 1","pages":"670-730"},"PeriodicalIF":3.0,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47563774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}