Sine-kernel determinant on two large intervals

IF 3.1 1区 数学 Q1 MATHEMATICS
Benjamin Fahs, Igor Krasovsky
{"title":"Sine-kernel determinant on two large intervals","authors":"Benjamin Fahs,&nbsp;Igor Krasovsky","doi":"10.1002/cpa.22147","DOIUrl":null,"url":null,"abstract":"<p>We consider the probability of two large gaps (intervals without eigenvalues) in the bulk scaling limit of the Gaussian Unitary Ensemble of random matrices. We determine the multiplicative constant in the asymptotics. We also provide the full explicit asymptotics (up to decreasing terms) for the transition between one and two large gaps.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 3","pages":"1958-2029"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22147","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22147","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the probability of two large gaps (intervals without eigenvalues) in the bulk scaling limit of the Gaussian Unitary Ensemble of random matrices. We determine the multiplicative constant in the asymptotics. We also provide the full explicit asymptotics (up to decreasing terms) for the transition between one and two large gaps.

Abstract Image

两个大区间上的正弦核行列式
我们考虑随机矩阵的高斯酉集合的体标度极限中存在两个大间隙(没有特征值的区间)的概率。我们确定了渐近性中的乘法常数。我们还提供了一个和两个大间隙之间转换的完全显式渐近性(直到递减项)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信