Multiplicity-1 minmax minimal hypersurfaces in manifolds with positive Ricci curvature

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Costante Bellettini
{"title":"Multiplicity-1 minmax minimal hypersurfaces in manifolds with positive Ricci curvature","authors":"Costante Bellettini","doi":"10.1002/cpa.22144","DOIUrl":null,"url":null,"abstract":"<p>We address the one-parameter minmax construction for the Allen–Cahn energy that has recently lead to a new proof of the existence of a closed minimal hypersurface in an arbitrary compact Riemannian manifold <math>\n <semantics>\n <msup>\n <mi>N</mi>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <annotation>$N^{n+1}$</annotation>\n </semantics></math> with <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≥</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n\\ge 2$</annotation>\n </semantics></math> (Guaraco's work, relying on works by Hutchinson, Tonegawa, and Wickramasekera when sending the Allen–Cahn parameter to 0). We obtain the following result: if the Ricci curvature of <i>N</i> is positive then the minmax Allen–Cahn solutions concentrate around a <i>multiplicity-1</i> minimal hypersurface (possibly having a singular set of dimension <math>\n <semantics>\n <mrow>\n <mo>≤</mo>\n <mi>n</mi>\n <mo>−</mo>\n <mn>7</mn>\n </mrow>\n <annotation>$\\le n-7$</annotation>\n </semantics></math>). This multiplicity result is new for <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≥</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$n\\ge 3$</annotation>\n </semantics></math> (for <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n=2$</annotation>\n </semantics></math> it is also implied by the recent work by Chodosh–Mantoulidis). We exploit directly the minmax characterization of the solutions and the analytic simplicity of semilinear (elliptic and parabolic) theory in <math>\n <semantics>\n <mrow>\n <msup>\n <mi>W</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$W^{1,2}(N)$</annotation>\n </semantics></math>. While geometric in flavour, our argument takes advantage of the flexibility afforded by the analytic Allen–Cahn framework, where hypersurfaces are replaced by diffused interfaces; more precisely, they are replaced by sufficiently regular functions (from <i>N</i> to <math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math>), whose weighted level sets give rise to diffused interfaces. We capitalise on the fact that (unlike a hypersurface) a function can be deformed both in the domain <i>N</i> (deforming the level sets) and in the target <math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math> (varying the values). We induce different geometric effects on the diffused interface by using these two types of deformations; this enables us to implement in a continuous way certain operations, whose analogues on a hypersurface would be discontinuous. An immediate corollary of the multiplicity-1 conclusion is that every compact Riemannian manifold <math>\n <semantics>\n <msup>\n <mi>N</mi>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <annotation>$N^{n+1}$</annotation>\n </semantics></math> with <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≥</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n\\ge 2$</annotation>\n </semantics></math> and positive Ricci curvature admits a two-sided closed minimal hypersurface, possibly with a singular set of dimension at most <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>7</mn>\n </mrow>\n <annotation>$n-7$</annotation>\n </semantics></math>. (This geometric corollary also follows from results obtained by different ideas in an Almgren–Pitts minmax framework.)</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22144","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22144","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We address the one-parameter minmax construction for the Allen–Cahn energy that has recently lead to a new proof of the existence of a closed minimal hypersurface in an arbitrary compact Riemannian manifold N n + 1 $N^{n+1}$ with n 2 $n\ge 2$ (Guaraco's work, relying on works by Hutchinson, Tonegawa, and Wickramasekera when sending the Allen–Cahn parameter to 0). We obtain the following result: if the Ricci curvature of N is positive then the minmax Allen–Cahn solutions concentrate around a multiplicity-1 minimal hypersurface (possibly having a singular set of dimension n 7 $\le n-7$ ). This multiplicity result is new for n 3 $n\ge 3$ (for n = 2 $n=2$ it is also implied by the recent work by Chodosh–Mantoulidis). We exploit directly the minmax characterization of the solutions and the analytic simplicity of semilinear (elliptic and parabolic) theory in W 1 , 2 ( N ) $W^{1,2}(N)$ . While geometric in flavour, our argument takes advantage of the flexibility afforded by the analytic Allen–Cahn framework, where hypersurfaces are replaced by diffused interfaces; more precisely, they are replaced by sufficiently regular functions (from N to R $\mathbb {R}$ ), whose weighted level sets give rise to diffused interfaces. We capitalise on the fact that (unlike a hypersurface) a function can be deformed both in the domain N (deforming the level sets) and in the target R $\mathbb {R}$ (varying the values). We induce different geometric effects on the diffused interface by using these two types of deformations; this enables us to implement in a continuous way certain operations, whose analogues on a hypersurface would be discontinuous. An immediate corollary of the multiplicity-1 conclusion is that every compact Riemannian manifold N n + 1 $N^{n+1}$ with n 2 $n\ge 2$ and positive Ricci curvature admits a two-sided closed minimal hypersurface, possibly with a singular set of dimension at most n 7 $n-7$ . (This geometric corollary also follows from results obtained by different ideas in an Almgren–Pitts minmax framework.)

Abstract Image

具有正Ricci曲率的流形中的乘法-1 minmax极小超曲面
我们讨论了Allen–Cahn能量的单参数minmax构造,该构造最近导致了任意紧致黎曼流形Nn+1$N^{N+1}$中闭极小超曲面存在的新证明,其中N≥2$N\ge2$(Guaraco的工作,依赖于Hutchinson、Tonegawa和Wickramasekera在将Allen–Kahn参数发送到0时的工作)。我们得到了以下结果:如果N的Ricci曲率是正的,那么minmax-Allen–Cahn解集中在一个乘法-1极小超曲面周围(可能具有一个奇异的维数集≤N−7$\le N-7$)。对于n≥3$n\ge 3$,这个多重性结果是新的(对于n=2$n=2$,Chodosh–Mantoulidis最近的工作也暗示了这一点)。我们直接利用了W1,2(N)$W^{1,2}(N)$中解的minmax特征和半线性(椭圆和抛物)理论的解析简单性。虽然具有几何性质,但我们的论点利用了解析Allen–Cahn框架所提供的灵活性,其中超曲面被扩散界面所取代;更准确地说,它们被足够正则的函数(从N到R$\mathbb{R}$)所取代,其加权水平集产生扩散接口。我们利用了这样一个事实,即(与超曲面不同)函数既可以在域N中变形(使水平集变形),也可以在目标R$\mathbb{R}$中变形(改变值)。通过使用这两种类型的变形,我们在扩散界面上产生了不同的几何效应;这使我们能够以连续的方式实现某些运算,这些运算在超曲面上的类似物是不连续的。乘法-1结论的一个直接推论是,N≥2$N\ge2$且Ricci曲率为正的每一个紧致黎曼流形Nn+1$N^{N+1}$都允许一个双侧闭极小超曲面,可能具有最多为N-7$N-7$的奇异维数集。(这个几何推论也来自于Almgren–Pitts-minmax框架中不同思想获得的结果。)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信