{"title":"随机零点的禁区:正交域的出现","authors":"Alon Nishry, Aron Wennman","doi":"10.1002/cpa.22142","DOIUrl":null,"url":null,"abstract":"<p>Our main discovery is a surprising interplay between quadrature domains on the one hand, and the zeros of the Gaussian Entire Function (GEF) on the other. Specifically, consider the GEF conditioned on the rare <i>hole event</i> that there are no zeros in a given large Jordan domain. We show that in the natural scaling limit, a quadrature domain enclosing the hole emerges as a <i>forbidden region</i>, where the zero density vanishes. Moreover, we give a description of the class of holes for which the forbidden region is a disk. The connecting link between random zeros and potential theory is supplied by a constrained extremal problem for the Zeitouni-Zelditch functional. To solve this problem, we recast it in terms of a seemingly novel obstacle problem, where the solution is forced to be harmonic inside the hole.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 3","pages":"1766-1849"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22142","citationCount":"0","resultStr":"{\"title\":\"The forbidden region for random zeros: Appearance of quadrature domains\",\"authors\":\"Alon Nishry, Aron Wennman\",\"doi\":\"10.1002/cpa.22142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Our main discovery is a surprising interplay between quadrature domains on the one hand, and the zeros of the Gaussian Entire Function (GEF) on the other. Specifically, consider the GEF conditioned on the rare <i>hole event</i> that there are no zeros in a given large Jordan domain. We show that in the natural scaling limit, a quadrature domain enclosing the hole emerges as a <i>forbidden region</i>, where the zero density vanishes. Moreover, we give a description of the class of holes for which the forbidden region is a disk. The connecting link between random zeros and potential theory is supplied by a constrained extremal problem for the Zeitouni-Zelditch functional. To solve this problem, we recast it in terms of a seemingly novel obstacle problem, where the solution is forced to be harmonic inside the hole.</p>\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":\"77 3\",\"pages\":\"1766-1849\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22142\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22142\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22142","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The forbidden region for random zeros: Appearance of quadrature domains
Our main discovery is a surprising interplay between quadrature domains on the one hand, and the zeros of the Gaussian Entire Function (GEF) on the other. Specifically, consider the GEF conditioned on the rare hole event that there are no zeros in a given large Jordan domain. We show that in the natural scaling limit, a quadrature domain enclosing the hole emerges as a forbidden region, where the zero density vanishes. Moreover, we give a description of the class of holes for which the forbidden region is a disk. The connecting link between random zeros and potential theory is supplied by a constrained extremal problem for the Zeitouni-Zelditch functional. To solve this problem, we recast it in terms of a seemingly novel obstacle problem, where the solution is forced to be harmonic inside the hole.