海森堡群中H-极小勒让德曲面的几乎单调性公式

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Tristan Rivière
{"title":"海森堡群中H-极小勒让德曲面的几乎单调性公式","authors":"Tristan Rivière","doi":"10.1002/cpa.22179","DOIUrl":null,"url":null,"abstract":"<p>We prove an almost monotonicity formula for H-minimal Legendrian Surfaces (also called <i>contact stationary Legendrian immersions</i> or <i>Hamiltonian stationary immersions</i>) in the Heisenberg Group <math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n <annotation>${\\mathbb {H}}^2$</annotation>\n </semantics></math>. From this formula we deduce a Bernstein-Liouville type theorem for H-minimal Legendrian Surfaces. We also present some possible range of applications of this formula.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22179","citationCount":"0","resultStr":"{\"title\":\"Almost monotonicity formula for H-minimal Legendrian surfaces in the Heisenberg group\",\"authors\":\"Tristan Rivière\",\"doi\":\"10.1002/cpa.22179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove an almost monotonicity formula for H-minimal Legendrian Surfaces (also called <i>contact stationary Legendrian immersions</i> or <i>Hamiltonian stationary immersions</i>) in the Heisenberg Group <math>\\n <semantics>\\n <msup>\\n <mi>H</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>${\\\\mathbb {H}}^2$</annotation>\\n </semantics></math>. From this formula we deduce a Bernstein-Liouville type theorem for H-minimal Legendrian Surfaces. We also present some possible range of applications of this formula.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22179\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22179\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22179","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了海森堡群H2${\mathbb{H}}^2$中H-极小勒让德曲面(也称为接触平稳勒让德浸入或哈密顿平稳浸入)的几乎单调性公式。从这个公式我们推导出H-极小Legendarian曲面的Bernstein—Liouville型定理。我们还介绍了这个公式的一些可能的应用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Almost monotonicity formula for H-minimal Legendrian surfaces in the Heisenberg group

We prove an almost monotonicity formula for H-minimal Legendrian Surfaces (also called contact stationary Legendrian immersions or Hamiltonian stationary immersions) in the Heisenberg Group H 2 ${\mathbb {H}}^2$ . From this formula we deduce a Bernstein-Liouville type theorem for H-minimal Legendrian Surfaces. We also present some possible range of applications of this formula.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信