海森堡群中H-极小勒让德曲面的几乎单调性公式

IF 3.1 1区 数学 Q1 MATHEMATICS
Tristan Rivière
{"title":"海森堡群中H-极小勒让德曲面的几乎单调性公式","authors":"Tristan Rivière","doi":"10.1002/cpa.22179","DOIUrl":null,"url":null,"abstract":"<p>We prove an almost monotonicity formula for H-minimal Legendrian Surfaces (also called <i>contact stationary Legendrian immersions</i> or <i>Hamiltonian stationary immersions</i>) in the Heisenberg Group <math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n <annotation>${\\mathbb {H}}^2$</annotation>\n </semantics></math>. From this formula we deduce a Bernstein-Liouville type theorem for H-minimal Legendrian Surfaces. We also present some possible range of applications of this formula.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 3","pages":"1940-1957"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22179","citationCount":"0","resultStr":"{\"title\":\"Almost monotonicity formula for H-minimal Legendrian surfaces in the Heisenberg group\",\"authors\":\"Tristan Rivière\",\"doi\":\"10.1002/cpa.22179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove an almost monotonicity formula for H-minimal Legendrian Surfaces (also called <i>contact stationary Legendrian immersions</i> or <i>Hamiltonian stationary immersions</i>) in the Heisenberg Group <math>\\n <semantics>\\n <msup>\\n <mi>H</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>${\\\\mathbb {H}}^2$</annotation>\\n </semantics></math>. From this formula we deduce a Bernstein-Liouville type theorem for H-minimal Legendrian Surfaces. We also present some possible range of applications of this formula.</p>\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":\"77 3\",\"pages\":\"1940-1957\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22179\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22179\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22179","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了海森堡群H2${\mathbb{H}}^2$中H-极小勒让德曲面(也称为接触平稳勒让德浸入或哈密顿平稳浸入)的几乎单调性公式。从这个公式我们推导出H-极小Legendarian曲面的Bernstein—Liouville型定理。我们还介绍了这个公式的一些可能的应用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Almost monotonicity formula for H-minimal Legendrian surfaces in the Heisenberg group

We prove an almost monotonicity formula for H-minimal Legendrian Surfaces (also called contact stationary Legendrian immersions or Hamiltonian stationary immersions) in the Heisenberg Group H 2 ${\mathbb {H}}^2$ . From this formula we deduce a Bernstein-Liouville type theorem for H-minimal Legendrian Surfaces. We also present some possible range of applications of this formula.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信