{"title":"Hearing the shape of ancient noncollapsed flows in \u0000 \u0000 \u0000 R\u0000 4\u0000 \u0000 $mathbb {R}^{4}$","authors":"Wenkui Du, Robert Haslhofer","doi":"10.1002/cpa.22140","DOIUrl":"10.1002/cpa.22140","url":null,"abstract":"We consider ancient noncollapsed mean curvature flows in R4$mathbb {R}^4$ whose tangent flow at −∞$-infty$ is a bubble‐sheet. We carry out a fine spectral analysis for the bubble‐sheet function u that measures the deviation of the renormalized flow from the round cylinder R2×S1(2)$mathbb {R}^2 times S^1(sqrt {2})$ and prove that for τ→−∞$tau rightarrow -infty$ we have the fine asymptotics u(y,θ,τ)=(y⊤Qy−2tr(Q))/|τ|+o(|τ|−1)$u(y,theta ,tau )= (y^top Qy -2textrm {tr}(Q))/|tau | + o(|tau |^{-1})$ , where Q=Q(τ)$Q=Q(tau )$ is a symmetric 2 × 2‐matrix whose eigenvalues are quantized to be either 0 or −1/8$-1/sqrt {8}$ . This naturally breaks up the classification problem for general ancient noncollapsed flows in R4$mathbb {R}^4$ into three cases depending on the rank of Q. In the case rk(Q)=0$mathrm{rk}(Q)=0$ , generalizing a prior result of Choi, Hershkovits and the second author, we prove that the flow is either a round shrinking cylinder or R×$mathbb {R}times$ 2d‐bowl. In the case rk(Q)=1$mathrm{rk}(Q)=1$ , under the additional assumption that the flow either splits off a line or is self‐similarly translating, as a consequence of recent work by Angenent, Brendle, Choi, Daskalopoulos, Hershkovits, Sesum and the second author we show that the flow must be R×$mathbb {R}times$ 2d‐oval or belongs to the one‐parameter family of 3d oval‐bowls constructed by Hoffman‐Ilmanen‐Martin‐White, respectively. Finally, in the case rk(Q)=2$mathrm{rk}(Q)=2$ we show that the flow is compact and SO(2)‐symmetric and for τ→−∞$tau rightarrow -infty$ has the same sharp asymptotics as the O(2) × O(2)‐symmetric ancient ovals constructed by Hershkovits and the second author. The full classification problem will be addressed in subsequent papers based on the results of the present paper.","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 1","pages":"543-582"},"PeriodicalIF":3.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45668603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}