{"title":"Convergence of the self-dual U(1)-Yang–Mills–Higgs energies to the \u0000 \u0000 \u0000 (\u0000 n\u0000 −\u0000 2\u0000 )\u0000 \u0000 $(n-2)$\u0000 -area functional","authors":"Davide Parise, Alessandro Pigati, Daniel Stern","doi":"10.1002/cpa.22150","DOIUrl":"10.1002/cpa.22150","url":null,"abstract":"<p>Given a hermitian line bundle <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>L</mi>\u0000 <mo>→</mo>\u0000 <mi>M</mi>\u0000 </mrow>\u0000 <annotation>$Lrightarrow M$</annotation>\u0000 </semantics></math> on a closed Riemannian manifold <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msup>\u0000 <mi>M</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <mo>,</mo>\u0000 <mi>g</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(M^n,g)$</annotation>\u0000 </semantics></math>, the self-dual Yang–Mills–Higgs energies are a natural family of functionals\u0000\u0000 </p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 1","pages":"670-730"},"PeriodicalIF":3.0,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47563774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}