二维临界渗流中连接概率和场的保形协方差

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Federico Camia
{"title":"二维临界渗流中连接概率和场的保形协方差","authors":"Federico Camia","doi":"10.1002/cpa.22171","DOIUrl":null,"url":null,"abstract":"<p>Fitting percolation into the conformal field theory framework requires showing that connection probabilities have a conformally invariant scaling limit. For critical site percolation on the triangular lattice, we prove that the probability that <i>n</i> vertices belong to the same open cluster has a well-defined scaling limit for every <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≥</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n \\ge 2$</annotation>\n </semantics></math>. Moreover, the limiting functions <math>\n <semantics>\n <mrow>\n <msub>\n <mi>P</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>x</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msub>\n <mi>x</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$P_n(x_1,\\ldots ,x_n)$</annotation>\n </semantics></math> transform covariantly under Möbius transformations of the plane as well as under local conformal maps, that is, they behave like correlation functions of primary operators in conformal field theory. In particular, they are invariant under translations, rotations and inversions, and <math>\n <semantics>\n <mrow>\n <msub>\n <mi>P</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>s</mi>\n <msub>\n <mi>x</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <mi>s</mi>\n <msub>\n <mi>x</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <msup>\n <mi>s</mi>\n <mrow>\n <mo>−</mo>\n <mn>5</mn>\n <mi>n</mi>\n <mo>/</mo>\n <mn>48</mn>\n </mrow>\n </msup>\n <msub>\n <mi>P</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>x</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msub>\n <mi>x</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$P_n(sx_1,\\ldots ,sx_n)=s^{-5n/48}P_n(x_1,\\ldots ,x_n)$</annotation>\n </semantics></math> for any <math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$s&gt;0$</annotation>\n </semantics></math>. This implies that <math>\n <semantics>\n <mrow>\n <msub>\n <mi>P</mi>\n <mn>2</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>x</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>x</mi>\n <mn>2</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <msub>\n <mi>C</mi>\n <mn>2</mn>\n </msub>\n <msup>\n <mrow>\n <mo>∥</mo>\n <msub>\n <mi>x</mi>\n <mn>1</mn>\n </msub>\n <mo>−</mo>\n <msub>\n <mi>x</mi>\n <mn>2</mn>\n </msub>\n <mo>∥</mo>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mn>5</mn>\n <mo>/</mo>\n <mn>24</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$P_{2}(x_1,x_2)=C_2 \\Vert x_1-x_2 \\Vert ^{-5/24}$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <msub>\n <mi>P</mi>\n <mn>3</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>x</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>x</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>x</mi>\n <mn>3</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <msub>\n <mi>C</mi>\n <mn>3</mn>\n </msub>\n <mrow>\n <mo>∥</mo>\n </mrow>\n <msub>\n <mi>x</mi>\n <mn>1</mn>\n </msub>\n <mo>−</mo>\n <msub>\n <mi>x</mi>\n <mn>2</mn>\n </msub>\n <msup>\n <mo>∥</mo>\n <mrow>\n <mo>−</mo>\n <mn>5</mn>\n <mo>/</mo>\n <mn>48</mn>\n </mrow>\n </msup>\n <mrow>\n <mo>∥</mo>\n </mrow>\n <msub>\n <mi>x</mi>\n <mn>1</mn>\n </msub>\n <mo>−</mo>\n <msub>\n <mi>x</mi>\n <mn>3</mn>\n </msub>\n <msup>\n <mo>∥</mo>\n <mrow>\n <mo>−</mo>\n <mn>5</mn>\n <mo>/</mo>\n <mn>48</mn>\n </mrow>\n </msup>\n <msup>\n <mrow>\n <mo>∥</mo>\n <msub>\n <mi>x</mi>\n <mn>2</mn>\n </msub>\n <mo>−</mo>\n <msub>\n <mi>x</mi>\n <mn>3</mn>\n </msub>\n <mo>∥</mo>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mn>5</mn>\n <mo>/</mo>\n <mn>48</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$P_3(x_1, x_2, x_3) = C_3 \\Vert x_1-x_2 \\Vert ^{-5/48} \\Vert x_1-x_3 \\Vert ^{-5/48} \\Vert x_2-x_3 \\Vert ^{-5/48}$</annotation>\n </semantics></math>, for some constants <i>C</i><sub>2</sub> and <i>C</i><sub>3</sub>.</p><p>We also define a site-diluted spin model whose <i>n</i>-point correlation functions C<sub><i>n</i></sub> can be expressed in terms of percolation connection probabilities and, as a consequence, have a well-defined scaling limit with the same properties as the functions <math>\n <semantics>\n <msub>\n <mi>P</mi>\n <mi>n</mi>\n </msub>\n <annotation>$P_n$</annotation>\n </semantics></math>. In particular, <math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n <mn>2</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>x</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>x</mi>\n <mn>2</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <msub>\n <mi>P</mi>\n <mn>2</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>x</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>x</mi>\n <mn>2</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathrm{C}_{2}(x_1,x_2)=P_{2}(x_1,x_2)$</annotation>\n </semantics></math>. We prove that the magnetization field associated with this spin model has a well-defined scaling limit in an appropriate space of distributions. The limiting field transforms covariantly under Möbius transformations with exponent (scaling dimension) 5/48. A heuristic analysis of the four-point function of the magnetization field suggests the presence of an additional conformal field of scaling dimension 5/4, which counts the number of percolation four-arm events and can be identified with the so-called “four-leg operator” of conformal field theory.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conformal covariance of connection probabilities and fields in 2D critical percolation\",\"authors\":\"Federico Camia\",\"doi\":\"10.1002/cpa.22171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fitting percolation into the conformal field theory framework requires showing that connection probabilities have a conformally invariant scaling limit. For critical site percolation on the triangular lattice, we prove that the probability that <i>n</i> vertices belong to the same open cluster has a well-defined scaling limit for every <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>≥</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$n \\\\ge 2$</annotation>\\n </semantics></math>. Moreover, the limiting functions <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>P</mi>\\n <mi>n</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>x</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <mtext>…</mtext>\\n <mo>,</mo>\\n <msub>\\n <mi>x</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$P_n(x_1,\\\\ldots ,x_n)$</annotation>\\n </semantics></math> transform covariantly under Möbius transformations of the plane as well as under local conformal maps, that is, they behave like correlation functions of primary operators in conformal field theory. In particular, they are invariant under translations, rotations and inversions, and <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>P</mi>\\n <mi>n</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>s</mi>\\n <msub>\\n <mi>x</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <mtext>…</mtext>\\n <mo>,</mo>\\n <mi>s</mi>\\n <msub>\\n <mi>x</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <msup>\\n <mi>s</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>5</mn>\\n <mi>n</mi>\\n <mo>/</mo>\\n <mn>48</mn>\\n </mrow>\\n </msup>\\n <msub>\\n <mi>P</mi>\\n <mi>n</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>x</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <mtext>…</mtext>\\n <mo>,</mo>\\n <msub>\\n <mi>x</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$P_n(sx_1,\\\\ldots ,sx_n)=s^{-5n/48}P_n(x_1,\\\\ldots ,x_n)$</annotation>\\n </semantics></math> for any <math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$s&gt;0$</annotation>\\n </semantics></math>. This implies that <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>P</mi>\\n <mn>2</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>x</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>x</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <msub>\\n <mi>C</mi>\\n <mn>2</mn>\\n </msub>\\n <msup>\\n <mrow>\\n <mo>∥</mo>\\n <msub>\\n <mi>x</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>−</mo>\\n <msub>\\n <mi>x</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>∥</mo>\\n </mrow>\\n <mrow>\\n <mo>−</mo>\\n <mn>5</mn>\\n <mo>/</mo>\\n <mn>24</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$P_{2}(x_1,x_2)=C_2 \\\\Vert x_1-x_2 \\\\Vert ^{-5/24}$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>P</mi>\\n <mn>3</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>x</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>x</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>x</mi>\\n <mn>3</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <msub>\\n <mi>C</mi>\\n <mn>3</mn>\\n </msub>\\n <mrow>\\n <mo>∥</mo>\\n </mrow>\\n <msub>\\n <mi>x</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>−</mo>\\n <msub>\\n <mi>x</mi>\\n <mn>2</mn>\\n </msub>\\n <msup>\\n <mo>∥</mo>\\n <mrow>\\n <mo>−</mo>\\n <mn>5</mn>\\n <mo>/</mo>\\n <mn>48</mn>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>∥</mo>\\n </mrow>\\n <msub>\\n <mi>x</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>−</mo>\\n <msub>\\n <mi>x</mi>\\n <mn>3</mn>\\n </msub>\\n <msup>\\n <mo>∥</mo>\\n <mrow>\\n <mo>−</mo>\\n <mn>5</mn>\\n <mo>/</mo>\\n <mn>48</mn>\\n </mrow>\\n </msup>\\n <msup>\\n <mrow>\\n <mo>∥</mo>\\n <msub>\\n <mi>x</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>−</mo>\\n <msub>\\n <mi>x</mi>\\n <mn>3</mn>\\n </msub>\\n <mo>∥</mo>\\n </mrow>\\n <mrow>\\n <mo>−</mo>\\n <mn>5</mn>\\n <mo>/</mo>\\n <mn>48</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$P_3(x_1, x_2, x_3) = C_3 \\\\Vert x_1-x_2 \\\\Vert ^{-5/48} \\\\Vert x_1-x_3 \\\\Vert ^{-5/48} \\\\Vert x_2-x_3 \\\\Vert ^{-5/48}$</annotation>\\n </semantics></math>, for some constants <i>C</i><sub>2</sub> and <i>C</i><sub>3</sub>.</p><p>We also define a site-diluted spin model whose <i>n</i>-point correlation functions C<sub><i>n</i></sub> can be expressed in terms of percolation connection probabilities and, as a consequence, have a well-defined scaling limit with the same properties as the functions <math>\\n <semantics>\\n <msub>\\n <mi>P</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>$P_n$</annotation>\\n </semantics></math>. In particular, <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>C</mi>\\n <mn>2</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>x</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>x</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <msub>\\n <mi>P</mi>\\n <mn>2</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>x</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>x</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathrm{C}_{2}(x_1,x_2)=P_{2}(x_1,x_2)$</annotation>\\n </semantics></math>. We prove that the magnetization field associated with this spin model has a well-defined scaling limit in an appropriate space of distributions. The limiting field transforms covariantly under Möbius transformations with exponent (scaling dimension) 5/48. A heuristic analysis of the four-point function of the magnetization field suggests the presence of an additional conformal field of scaling dimension 5/4, which counts the number of percolation four-arm events and can be identified with the so-called “four-leg operator” of conformal field theory.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22171\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22171","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

将渗流拟合到共形场论框架中需要证明连接概率具有共形不变的标度极限。对于三角格上的临界点渗流,我们证明了对于每n≥2$n\ge2$,n个顶点属于同一开簇的概率具有一个明确的标度极限。此外,极限函数Pn(x1,…,xn)$P_n(x_1,\ldots,x_n)$在平面的Möbius变换下以及在局部共形映射下都是协变的,也就是说,它们的行为类似于共形场论中主算子的相关函数。特别地,它们在平移、旋转和反转下是不变的,并且对于任何s>;0$s>;0美元。这意味着P2(x1,x2)=C2‖x1−x2‖−5/24$P_{2}(x_1,x_2)=C_2\Vert x_1-x_2\Vert^{-5/24}$和P3(x1,x2,x3对于某些常数C2和C3,\Vertx_2-x_3\Vert^{-5/48}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conformal covariance of connection probabilities and fields in 2D critical percolation

Fitting percolation into the conformal field theory framework requires showing that connection probabilities have a conformally invariant scaling limit. For critical site percolation on the triangular lattice, we prove that the probability that n vertices belong to the same open cluster has a well-defined scaling limit for every n 2 $n \ge 2$ . Moreover, the limiting functions P n ( x 1 , , x n ) $P_n(x_1,\ldots ,x_n)$ transform covariantly under Möbius transformations of the plane as well as under local conformal maps, that is, they behave like correlation functions of primary operators in conformal field theory. In particular, they are invariant under translations, rotations and inversions, and P n ( s x 1 , , s x n ) = s 5 n / 48 P n ( x 1 , , x n ) $P_n(sx_1,\ldots ,sx_n)=s^{-5n/48}P_n(x_1,\ldots ,x_n)$ for any s > 0 $s>0$ . This implies that P 2 ( x 1 , x 2 ) = C 2 x 1 x 2 5 / 24 $P_{2}(x_1,x_2)=C_2 \Vert x_1-x_2 \Vert ^{-5/24}$ and P 3 ( x 1 , x 2 , x 3 ) = C 3 x 1 x 2 5 / 48 x 1 x 3 5 / 48 x 2 x 3 5 / 48 $P_3(x_1, x_2, x_3) = C_3 \Vert x_1-x_2 \Vert ^{-5/48} \Vert x_1-x_3 \Vert ^{-5/48} \Vert x_2-x_3 \Vert ^{-5/48}$ , for some constants C2 and C3.

We also define a site-diluted spin model whose n-point correlation functions Cn can be expressed in terms of percolation connection probabilities and, as a consequence, have a well-defined scaling limit with the same properties as the functions P n $P_n$ . In particular, C 2 ( x 1 , x 2 ) = P 2 ( x 1 , x 2 ) $\mathrm{C}_{2}(x_1,x_2)=P_{2}(x_1,x_2)$ . We prove that the magnetization field associated with this spin model has a well-defined scaling limit in an appropriate space of distributions. The limiting field transforms covariantly under Möbius transformations with exponent (scaling dimension) 5/48. A heuristic analysis of the four-point function of the magnetization field suggests the presence of an additional conformal field of scaling dimension 5/4, which counts the number of percolation four-arm events and can be identified with the so-called “four-leg operator” of conformal field theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信