随机 d 规则图谱,直至边缘

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jiaoyang Huang, Horng-Tzer Yau
{"title":"随机 d 规则图谱,直至边缘","authors":"Jiaoyang Huang,&nbsp;Horng-Tzer Yau","doi":"10.1002/cpa.22176","DOIUrl":null,"url":null,"abstract":"<p>Consider the normalized adjacency matrices of random <i>d</i>-regular graphs on <i>N</i> vertices with fixed degree <math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$d\\geqslant 3$</annotation>\n </semantics></math>. We prove that, with probability <math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>−</mo>\n <msup>\n <mi>N</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n <mo>+</mo>\n <mi>ε</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$1-N^{-1+\\varepsilon }$</annotation>\n </semantics></math> for any <math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\varepsilon &gt;0$</annotation>\n </semantics></math>, the following two properties hold as <math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$N \\rightarrow \\infty$</annotation>\n </semantics></math> provided that <math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$d\\geqslant 3$</annotation>\n </semantics></math>: (i) The eigenvalues are close to the classical eigenvalue locations given by the Kesten–McKay distribution. In particular, the extremal eigenvalues are concentrated with polynomial error bound in <i>N</i>, that is, <math>\n <semantics>\n <mrow>\n <msub>\n <mi>λ</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n <mrow>\n <mo>|</mo>\n <msub>\n <mi>λ</mi>\n <mi>N</mi>\n </msub>\n <mo>|</mo>\n </mrow>\n <mo>⩽</mo>\n <mn>2</mn>\n <mo>+</mo>\n <msup>\n <mi>N</mi>\n <mrow>\n <mo>−</mo>\n <mi>c</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\lambda _2, |\\lambda _N|\\leqslant 2+N^{-c}$</annotation>\n </semantics></math>. (ii) All eigenvectors of random <i>d</i>-regular graphs are completely delocalized.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectrum of random d-regular graphs up to the edge\",\"authors\":\"Jiaoyang Huang,&nbsp;Horng-Tzer Yau\",\"doi\":\"10.1002/cpa.22176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Consider the normalized adjacency matrices of random <i>d</i>-regular graphs on <i>N</i> vertices with fixed degree <math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>⩾</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$d\\\\geqslant 3$</annotation>\\n </semantics></math>. We prove that, with probability <math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>−</mo>\\n <msup>\\n <mi>N</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>+</mo>\\n <mi>ε</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$1-N^{-1+\\\\varepsilon }$</annotation>\\n </semantics></math> for any <math>\\n <semantics>\\n <mrow>\\n <mi>ε</mi>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\varepsilon &gt;0$</annotation>\\n </semantics></math>, the following two properties hold as <math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>→</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$N \\\\rightarrow \\\\infty$</annotation>\\n </semantics></math> provided that <math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>⩾</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$d\\\\geqslant 3$</annotation>\\n </semantics></math>: (i) The eigenvalues are close to the classical eigenvalue locations given by the Kesten–McKay distribution. In particular, the extremal eigenvalues are concentrated with polynomial error bound in <i>N</i>, that is, <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>λ</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>,</mo>\\n <mrow>\\n <mo>|</mo>\\n <msub>\\n <mi>λ</mi>\\n <mi>N</mi>\\n </msub>\\n <mo>|</mo>\\n </mrow>\\n <mo>⩽</mo>\\n <mn>2</mn>\\n <mo>+</mo>\\n <msup>\\n <mi>N</mi>\\n <mrow>\\n <mo>−</mo>\\n <mi>c</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$\\\\lambda _2, |\\\\lambda _N|\\\\leqslant 2+N^{-c}$</annotation>\\n </semantics></math>. (ii) All eigenvectors of random <i>d</i>-regular graphs are completely delocalized.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22176\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22176","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

考虑 N 个顶点上具有固定度 d ⩾ 3 $d\geqslant 3$ 的随机 d-regular 图的归一化邻接矩阵。我们证明,对于任意 ε > 0 $\varepsilon >0$ ,只要 d ⩾ 3 $d\geqslant 3$,以下两个性质在 N → ∞ $N \rightarrow \infty$ 时成立:(i) 特征值接近凯斯顿-麦凯分布给出的经典特征值位置。特别是,极值特征值以 N 的多项式误差约束集中,即 λ 2 , | λ N | | ⩽ 2 + N - c $\lambda _2, |\lambda _N|leqslant 2+N^{-c}$ 。 (ii) 随机 d-regular 图形的所有特征向量都是完全非局部化的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectrum of random d-regular graphs up to the edge

Consider the normalized adjacency matrices of random d-regular graphs on N vertices with fixed degree d 3 $d\geqslant 3$ . We prove that, with probability 1 N 1 + ε $1-N^{-1+\varepsilon }$ for any ε > 0 $\varepsilon >0$ , the following two properties hold as N $N \rightarrow \infty$ provided that d 3 $d\geqslant 3$ : (i) The eigenvalues are close to the classical eigenvalue locations given by the Kesten–McKay distribution. In particular, the extremal eigenvalues are concentrated with polynomial error bound in N, that is, λ 2 , | λ N | 2 + N c $\lambda _2, |\lambda _N|\leqslant 2+N^{-c}$ . (ii) All eigenvectors of random d-regular graphs are completely delocalized.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信