{"title":"Spectrum of random d-regular graphs up to the edge","authors":"Jiaoyang Huang, Horng-Tzer Yau","doi":"10.1002/cpa.22176","DOIUrl":null,"url":null,"abstract":"<p>Consider the normalized adjacency matrices of random <i>d</i>-regular graphs on <i>N</i> vertices with fixed degree <math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$d\\geqslant 3$</annotation>\n </semantics></math>. We prove that, with probability <math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>−</mo>\n <msup>\n <mi>N</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n <mo>+</mo>\n <mi>ε</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$1-N^{-1+\\varepsilon }$</annotation>\n </semantics></math> for any <math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\varepsilon >0$</annotation>\n </semantics></math>, the following two properties hold as <math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$N \\rightarrow \\infty$</annotation>\n </semantics></math> provided that <math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$d\\geqslant 3$</annotation>\n </semantics></math>: (i) The eigenvalues are close to the classical eigenvalue locations given by the Kesten–McKay distribution. In particular, the extremal eigenvalues are concentrated with polynomial error bound in <i>N</i>, that is, <math>\n <semantics>\n <mrow>\n <msub>\n <mi>λ</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n <mrow>\n <mo>|</mo>\n <msub>\n <mi>λ</mi>\n <mi>N</mi>\n </msub>\n <mo>|</mo>\n </mrow>\n <mo>⩽</mo>\n <mn>2</mn>\n <mo>+</mo>\n <msup>\n <mi>N</mi>\n <mrow>\n <mo>−</mo>\n <mi>c</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\lambda _2, |\\lambda _N|\\leqslant 2+N^{-c}$</annotation>\n </semantics></math>. (ii) All eigenvectors of random <i>d</i>-regular graphs are completely delocalized.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 3","pages":"1635-1723"},"PeriodicalIF":3.1000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22176","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Consider the normalized adjacency matrices of random d-regular graphs on N vertices with fixed degree . We prove that, with probability for any , the following two properties hold as provided that : (i) The eigenvalues are close to the classical eigenvalue locations given by the Kesten–McKay distribution. In particular, the extremal eigenvalues are concentrated with polynomial error bound in N, that is, . (ii) All eigenvectors of random d-regular graphs are completely delocalized.