考虑对流效应的肿瘤生长模型的不可压缩极限

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Noemi David, Markus Schmidtchen
{"title":"考虑对流效应的肿瘤生长模型的不可压缩极限","authors":"Noemi David,&nbsp;Markus Schmidtchen","doi":"10.1002/cpa.22178","DOIUrl":null,"url":null,"abstract":"<p>In this work we study a tissue growth model with applications to tumour growth. The model is based on that of Perthame, Quirós, and Vázquez proposed in 2014 but incorporates the advective effects caused, for instance, by the presence of nutrients, oxygen, or, possibly, as a result of self-propulsion. The main result of this work is the incompressible limit of this model which builds a bridge between the density-based model and a geometry free-boundary problem by passing to a singular limit in the pressure law. The limiting objects are then proven to be unique.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22178","citationCount":"0","resultStr":"{\"title\":\"On the incompressible limit for a tumour growth model incorporating convective effects\",\"authors\":\"Noemi David,&nbsp;Markus Schmidtchen\",\"doi\":\"10.1002/cpa.22178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work we study a tissue growth model with applications to tumour growth. The model is based on that of Perthame, Quirós, and Vázquez proposed in 2014 but incorporates the advective effects caused, for instance, by the presence of nutrients, oxygen, or, possibly, as a result of self-propulsion. The main result of this work is the incompressible limit of this model which builds a bridge between the density-based model and a geometry free-boundary problem by passing to a singular limit in the pressure law. The limiting objects are then proven to be unique.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22178\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22178\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22178","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究了一种应用于肿瘤生长的组织生长模型。该模型基于Perthame、Quirós和Vázquez在2014年提出的模型,但考虑了平流效应,例如营养物质、氧气的存在,或者可能是自推进的结果。这项工作的主要结果是该模型的不可压缩极限,它通过传递到压力定律中的奇异极限,在基于密度的模型和无几何边界问题之间架起了一座桥梁。然后证明限制对象是唯一的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the incompressible limit for a tumour growth model incorporating convective effects

In this work we study a tissue growth model with applications to tumour growth. The model is based on that of Perthame, Quirós, and Vázquez proposed in 2014 but incorporates the advective effects caused, for instance, by the presence of nutrients, oxygen, or, possibly, as a result of self-propulsion. The main result of this work is the incompressible limit of this model which builds a bridge between the density-based model and a geometry free-boundary problem by passing to a singular limit in the pressure law. The limiting objects are then proven to be unique.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信