Boltzmann方程越过障碍物的Hölder正则性

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Chanwoo Kim, Donghyun Lee
{"title":"Boltzmann方程越过障碍物的Hölder正则性","authors":"Chanwoo Kim,&nbsp;Donghyun Lee","doi":"10.1002/cpa.22167","DOIUrl":null,"url":null,"abstract":"<p>Regularity and singularity of the solutions according to the shape of domains is a challenging research theme in the Boltzmann theory. In this paper, we prove an Hölder regularity in <math>\n <semantics>\n <msubsup>\n <mi>C</mi>\n <mrow>\n <mi>x</mi>\n <mo>,</mo>\n <mi>v</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n <mo>,</mo>\n <mfrac>\n <mn>1</mn>\n <mn>2</mn>\n </mfrac>\n <mo>−</mo>\n </mrow>\n </msubsup>\n <annotation>$C^{0,\\frac{1}{2}-}_{x,v}$</annotation>\n </semantics></math> for the Boltzmann equation of the hard-sphere molecule, which undergoes the elastic reflection in the intermolecular collision and the contact with the boundary of a convex obstacle. In particular, this Hölder regularity result is a stark contrast to the case of other physical boundary conditions (such as the diffuse reflection boundary condition and in-flow boundary condition), for which the solutions of the Boltzmann equation develop discontinuity in a codimension 1 subset (Kim [Comm. Math. Phys. 308 (2011)]), and therefore the best possible regularity is BV, which has been proved by Guo et al. [Arch. Rational Mech. Anal. 220 (2016)].</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hölder regularity of the Boltzmann equation past an obstacle\",\"authors\":\"Chanwoo Kim,&nbsp;Donghyun Lee\",\"doi\":\"10.1002/cpa.22167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Regularity and singularity of the solutions according to the shape of domains is a challenging research theme in the Boltzmann theory. In this paper, we prove an Hölder regularity in <math>\\n <semantics>\\n <msubsup>\\n <mi>C</mi>\\n <mrow>\\n <mi>x</mi>\\n <mo>,</mo>\\n <mi>v</mi>\\n </mrow>\\n <mrow>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mfrac>\\n <mn>1</mn>\\n <mn>2</mn>\\n </mfrac>\\n <mo>−</mo>\\n </mrow>\\n </msubsup>\\n <annotation>$C^{0,\\\\frac{1}{2}-}_{x,v}$</annotation>\\n </semantics></math> for the Boltzmann equation of the hard-sphere molecule, which undergoes the elastic reflection in the intermolecular collision and the contact with the boundary of a convex obstacle. In particular, this Hölder regularity result is a stark contrast to the case of other physical boundary conditions (such as the diffuse reflection boundary condition and in-flow boundary condition), for which the solutions of the Boltzmann equation develop discontinuity in a codimension 1 subset (Kim [Comm. Math. Phys. 308 (2011)]), and therefore the best possible regularity is BV, which has been proved by Guo et al. [Arch. Rational Mech. Anal. 220 (2016)].</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22167\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22167","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

根据域形状的解的正则性和奇异性是玻尔兹曼理论中一个具有挑战性的研究主题。本文证明了Cx,v0,12−$C^{0,\frac{1}中的一个Hölder正则性{2}-}_对于硬球分子的玻尔兹曼方程,{x,v}$,其在分子间碰撞和与凸障碍物边界的接触中经历弹性反射。特别是,这个Hölder正则性结果与其他物理边界条件(如漫反射边界条件和流中边界条件)的情况形成了鲜明对比,在其他物理边界情况下,玻尔兹曼方程的解在余维1的子集中产生了不连续性(Kim[Comm.Math.Phys.308(2011)]),因此最佳可能的正则性是BV,郭等人[Arch.RrationalMech.Anal.220(2016)]已经证明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hölder regularity of the Boltzmann equation past an obstacle

Regularity and singularity of the solutions according to the shape of domains is a challenging research theme in the Boltzmann theory. In this paper, we prove an Hölder regularity in C x , v 0 , 1 2 $C^{0,\frac{1}{2}-}_{x,v}$ for the Boltzmann equation of the hard-sphere molecule, which undergoes the elastic reflection in the intermolecular collision and the contact with the boundary of a convex obstacle. In particular, this Hölder regularity result is a stark contrast to the case of other physical boundary conditions (such as the diffuse reflection boundary condition and in-flow boundary condition), for which the solutions of the Boltzmann equation develop discontinuity in a codimension 1 subset (Kim [Comm. Math. Phys. 308 (2011)]), and therefore the best possible regularity is BV, which has been proved by Guo et al. [Arch. Rational Mech. Anal. 220 (2016)].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信