{"title":"Hölder regularity of the Boltzmann equation past an obstacle","authors":"Chanwoo Kim, Donghyun Lee","doi":"10.1002/cpa.22167","DOIUrl":null,"url":null,"abstract":"<p>Regularity and singularity of the solutions according to the shape of domains is a challenging research theme in the Boltzmann theory. In this paper, we prove an Hölder regularity in <math>\n <semantics>\n <msubsup>\n <mi>C</mi>\n <mrow>\n <mi>x</mi>\n <mo>,</mo>\n <mi>v</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n <mo>,</mo>\n <mfrac>\n <mn>1</mn>\n <mn>2</mn>\n </mfrac>\n <mo>−</mo>\n </mrow>\n </msubsup>\n <annotation>$C^{0,\\frac{1}{2}-}_{x,v}$</annotation>\n </semantics></math> for the Boltzmann equation of the hard-sphere molecule, which undergoes the elastic reflection in the intermolecular collision and the contact with the boundary of a convex obstacle. In particular, this Hölder regularity result is a stark contrast to the case of other physical boundary conditions (such as the diffuse reflection boundary condition and in-flow boundary condition), for which the solutions of the Boltzmann equation develop discontinuity in a codimension 1 subset (Kim [Comm. Math. Phys. 308 (2011)]), and therefore the best possible regularity is BV, which has been proved by Guo et al. [Arch. Rational Mech. Anal. 220 (2016)].</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22167","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Regularity and singularity of the solutions according to the shape of domains is a challenging research theme in the Boltzmann theory. In this paper, we prove an Hölder regularity in for the Boltzmann equation of the hard-sphere molecule, which undergoes the elastic reflection in the intermolecular collision and the contact with the boundary of a convex obstacle. In particular, this Hölder regularity result is a stark contrast to the case of other physical boundary conditions (such as the diffuse reflection boundary condition and in-flow boundary condition), for which the solutions of the Boltzmann equation develop discontinuity in a codimension 1 subset (Kim [Comm. Math. Phys. 308 (2011)]), and therefore the best possible regularity is BV, which has been proved by Guo et al. [Arch. Rational Mech. Anal. 220 (2016)].